Publications by authors named "Joao M S Cardoso"

The present work follows a previous report describing the antibacterial activity of silver camphorimine complexes of general formula [Ag(NO3)L]. The synthesis and demonstration of the antifungal and antibacterial activity of three novel [Ag(NO3)L] complexes (named 1, 2 and 3) is herein demonstrated. This work also shows for the first time that the previously studied complexes (named 4 to 8) also exert antifungal activity.

View Article and Find Full Text PDF

Camphorsulphonylimine complexes [Ag(NO)(L)] (L=CHNSO, 1) and [(AgNO)(L)] (L=CHNSO, 2) were synthesized and characterized by elemental analysis, spectroscopy (IR, NMR) and cyclic voltammetry. [Ag(NO)(L)] crystalizes in the monoclinic C2 space group with a triangular geometry assuming a chalice-type shape. The anti-proliferative properties of the new complexes 1 and 2 and those of the previously reported [Ag(NO)(L)] (L=CHNSO, 3) were assessed against the human ovarian cancer cells (cisplatin-sensitive A2780, cisplatin-resistant A2780cisR) and the non-tumoral human HEK 293 cell line, using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay.

View Article and Find Full Text PDF

Five new silver camphorimine complexes of general formula [Ag(NO3)(Y)L] were synthesized and fully characterized using spectroscopic and analytical techniques. The structure of [Ag(NO3)(OC10H14NC6H4NC10H14O)] () was analyzed using single crystal X-ray diffraction, showing that it arranges as a coordination polymer formed by sequential Ag(NO3) units bridged by the bi-camphor ligand (). The antimicrobial properties of the new complexes were screened using the disk diffusion method and their Minimal Inhibitory Concentrations (MIC) were assessed against selected bacterial strains of the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli, Pseudomonas aeruginosa, and Burkholderia contaminans.

View Article and Find Full Text PDF

Exceptional water oxidation (WO) turnover frequencies (TOF=17,000 h(-1)), and turnover numbers (TONs) close to 400,000, the largest ever reported for a metal-catalyzed WO reaction, have been found by using [Cp*Ir(III)(NHC)Cl2] (in which NHC=3-methyl-1-(1-phenylethyl)-imidazoline-2-ylidene) as the pre-catalyst and NaIO4 as oxidant in water at 40 °C. The apparent TOF for [Cp*Ir(III)(NHC)X2] (1X, in which X stands for I (1I), Cl (1Cl), or triflate anion (1OTf)) and [(Cp*-NHCMe)Ir(III)I2] (2) complexes, is kept constant during almost all of the O2 evolution reaction when using NaIO4 as oxidant. The TOF was found to be dependent on the ligand and on the anion (TOF ranging from ≈600 to ≈1100 h(-1) at 25 °C).

View Article and Find Full Text PDF

A direct synthesis of bidentate cyclopentadienyl-functionalised NHC-iron(II) complexes by using imidazolium salts and commercially available Fe(3)(CO)(12) is developed. These well-defined iron-NHC complexes efficiently catalyse the reduction of sulfoxides under mild conditions. Radical scavenging experiments indicate the presence of free radicals in the catalytic reaction.

View Article and Find Full Text PDF