Publications by authors named "Joao G Crespo"

2-Phenylethanol (2-PE) is a key flavor compound with a rose-like scent, used in the cosmetics, perfume, home care and food industries. This aroma compound can be obtained naturally from various flowers, however chemical synthesis is the most used route to meet market demand. The increasing interest in natural products has led to the development of more environmentally friendly alternatives for 2-PE production through biotechnological approaches.

View Article and Find Full Text PDF

In this work, pilot-scale nanofiltration was used to obtain aqueous solutions rich in hydroxytyrosol and tyrosol from olive oil by-products. A large-scale simple process involving olive mill standard machinery (blender and decanter) was used for the olive pomace pre-treatment with water. The aqueous extract was then directly fed to a nanofiltration unit and concentrated by reverse osmosis.

View Article and Find Full Text PDF

Over the past years, there has been an increasing concern about the occurrence of antineoplastic drugs in water bodies. The incomplete removal of these pharmaceuticals from wastewaters has been confirmed by several scientists, making it urgent to find a reliable technique or a combination of techniques capable to produce clean and safe water. In this work, the combination of nanofiltration and ozone (O)-based processes (NF + O, NF + O/HO and NF + O/HO/UVA) was studied aiming to produce clean water from wastewater treatment plant (WWTP) secondary effluents to be safely discharged into water bodies, reused in daily practices such as aquaculture activities or for recharging aquifers used as abstraction sources for drinking water production.

View Article and Find Full Text PDF

Antineoplastic drugs are pharmaceuticals that have been raising concerns among the scientific community due to: (i) their increasing prescription in the fight against the disease of the twentieth century (cancer); (ii) their recalcitrance to conventional wastewater treatments; (iii) their poor environmental biodegradability; and (iv) their potential risk to any eukaryotic organism. This emerges the urgency in finding solutions to mitigate the entrance and accumulation of these hazardous chemicals in the environment. Advanced oxidation processes (AOPs) have been taken into consideration to improve the degradation of antineoplastic drugs in wastewater treatment plants (WWTPs), but the formation of by-products that are more toxic or exhibit a different toxicity profile than the parent drug is frequently reported.

View Article and Find Full Text PDF

According to the World Health Organization, antibiotic resistance is one of the main threats to global health. The excessive use of several antibiotics has led to the widespread distribution of antibiotic-resistant bacteria and antibiotic resistance genes in various environment matrices, including surface water. In this study, total coliforms, and enterococci, as well as total coliforms and resistant to ciprofloxacin, levofloxacin, ampicillin, streptomycin, and imipenem, were monitored in several surface water sampling events.

View Article and Find Full Text PDF

For the production of polyhydroxyalkanoates (PHA) using nitrogen-rich feedstocks (e.g., protein-rich resources), the typical strategy of restricting cell growth as a means to enhance overall PHA productivity by nitrogen limitation is not applicable.

View Article and Find Full Text PDF

The monitoring of a membrane bioreactor (MBR) requires the assessment of both biological and membrane performance. Additionally, the development of membrane fouling and the requirements for frequent membrane cleaning are still major concerns during MBR operation, requiring tight monitoring and system characterization. Transmembrane pressure is usually monitored online and allows following the evolution of membrane performance.

View Article and Find Full Text PDF

The increasing demand for natural products has led to biotechnological vanillin production, which requires the recovery of vanillin (and vanillyl alcohol at trace concentrations, as in botanical vanillin) from the bioconversion broth, free from potential contaminants: the substrate and metabolites of bioconversion. This work discusses the recovery and fractionation of bio-vanillin, from a bioconversion broth, by pervaporation and by vacuum distillation, coupled with fractionated condensation. The objective was to recover vanillin free of potential contaminants, with maximised fluxes and selectivity for vanillin against water and minimised energy consumption per mass of vanillin recovered.

View Article and Find Full Text PDF

Membrane-based gas separation is a promising unit operation in a low-carbon economy due to its simplicity, ease of operation, reduced energy consumption and portability. A methodology is proposed to immobilise enzymes in stable water-in-oil (W/O) emulsions produced by direct membrane emulsification systems and thereafter impregnated them in the pores of a membrane producing emulsion-based supported liquid membranes. The selected case-study was for biogas (CO and CH) purification.

View Article and Find Full Text PDF

This work aims at understanding the attachment mechanisms and stability of proteins on a chromatography medium to develop more efficient functionalization methodologies, which can be exploited in affinity chromatography. In particular, the study was focused on the understanding of the attachment mechanisms of bovine serum albumin (BSA), used as a ligand model, and protein G on novel amine-modified alumina monoliths as a stationary phase. Protein G was used to develop a column for antibody purification.

View Article and Find Full Text PDF

This study covers the modification, (bio)fouling characterization, use, and cleaning of commercial heterogeneous anion exchange membranes (AEMs) to evaluate their feasibility for reverse electrodialysis (RED) applications. A surface modification with poly (acrylic) acid resulted in an improved monovalent perm-selectivity (decreased sulfate membrane transport rate). Moreover, we evaluated the (bio)fouling potential of the membrane using sodium dodecyl sulfate (SDS), sodium dodecyl benzenesulfonate (SDBS), and Aeromonas hydrophila as model organic foulants and a biofoulant, respectively.

View Article and Find Full Text PDF

Wastewater reuse for agricultural irrigation still raises important public health issues regarding its safety, due to the increasing presence of emerging contaminants, such as antibiotic resistant bacteria and genes, in the treated effluents. In this paper, the potential for a commercial Desal 5 DK nanofiltration membrane to be used as a tertiary treatment in the wastewater treatment plants for a more effective elimination of these pollutants from the produced effluents was assessed on laboratory scale, using a stainless steel cross-flow cell. The obtained results showed high concentrations of total bacteria and target carbapenem and (fluoro)quinolone resistance genes (, , , , , A, B and S) not only in the discharged, but also in the reused, effluent samples, which suggests that their use may not be entirely safe.

View Article and Find Full Text PDF

This work proposes a way to maximize the potential of a sp. biorefinery process, through membrane technology, producing an extract enriched in soluble proteins, free from the insoluble protein fraction, with a low lipid content and eliminating the colored chlorophyll-a. This procedure, following the principles of a circular economy approach, allows for the valorization of a stream from the biorefining of sp.

View Article and Find Full Text PDF

Membrane research in Portugal is aligned with global concerns and expectations for sustainable social development, thus progressively focusing on the use of natural resources and renewable energy. This review begins by addressing the pioneer work on membrane science and technology in Portugal by the research groups of - (IST), - (FCT NOVA) and - (FEUP) aiming to provide an historical perspective on the topic. Then, an overview of the trends and challenges in membrane processes and materials, mostly in the last five years, involving Portuguese researchers, is presented as a contribution to a more sustainable water-energy-material-food nexus.

View Article and Find Full Text PDF

This work explores the application of Reverse Osmosis (RO) upcycled membranes, as Anion Exchange Membranes (AEMs) in Donnan Dialysis (DD) and related processes, such as the Ion Exchange Membrane Bioreactor (IEMB), for the removal of nitrate from contaminated water, to meet drinking water standards. Such upcycled membranes might be manufactured at a lower price than commercial AEMs, while their utilization reinforces the commitment to a circular economy transition. In an effort to gain a better understanding of such AEMs, confocal µ-Raman spectroscopy was employed, to assess the distribution of the ion-exchange sites through the thickness of the prepared membranes, and 2D fluorescence spectroscopy, to evaluate alterations in the membranes caused by fouling and chemical cleaning The best performing membrane reached a 56% average nitrate removal within 24 h in the DD and IEMB systems, with the latter furthermore allowing for simultaneous elimination of the pollutant by biological denitrification, thus avoiding its discharge into the environment.

View Article and Find Full Text PDF

Microalgae industrial production is viewed as a solution for alternative production of nutraceuticals, cosmetics, biofertilizers, and biopolymers. Throughout the years, several technological advances have been implemented, increasing the competitiveness of microalgae industry. However, online monitoring and real-time process control of a microalgae production factory still require further development.

View Article and Find Full Text PDF

The combination of photocatalysis and membrane filtration in a single reactor has been proposed, since the photocatalytic treatment may degrade the pollutants retained by the membrane and reduce fouling. However, polymeric membranes can be susceptible to degradation by UV radiation and free radicals. In the present study, five commercial polymeric membranes were exposed to ultraviolet (UV) radiation before and after applying a sol-gel coating with TiO nanoparticles.

View Article and Find Full Text PDF

Along with rapid social development, the use of insecticides and caffeine-containing products increases, a trend that is also reflected in the composition of surface waters. This study is focused on the phototreatment of a surface water containing three neonicotinoids (imidacloprid, thiamethoxam, and clothianidin) and caffeine. Firstly, the radiation absorption of the target pollutants and the effect of the water matrix components were evaluated.

View Article and Find Full Text PDF

Membrane processes are complex systems, often comprising several physicochemical phenomena, as well as biological reactions, depending on the systems studied. Therefore, process modelling is a requirement to simulate (and predict) process and membrane performance, to infer about optimal process conditions, to assess fouling development, and ultimately, for process monitoring and control. Despite the actual dissemination of terms such as Machine Learning, the use of such computational tools to model membrane processes was regarded by many in the past as not useful from a scientific point-of-view, not contributing to the understanding of the phenomena involved.

View Article and Find Full Text PDF

The present study focused on the methodology for identification of the wastewater stream that presents the highest phenolic impact at a large oil refinery. As a case-study, the oil refinery, Petrogal S.A.

View Article and Find Full Text PDF
Article Synopsis
  • * The research explored the effectiveness of using passive samplers called POCIS to monitor these drugs, showing that they could reliably capture data over 15 days and correlate well with traditional grab sampling for capecitabine.
  • * While POCIS offers advantages like easier analysis and time-weighted data, there are limitations when drug concentrations are low or if the sampling period is brief, which may lead to lost information.
View Article and Find Full Text PDF

In this study, we report the impact of the magnetic field on protein permeability through magnetic-responsive, block copolymer, nanocomposite membranes with hydrophilic and hydrophobic characters. The hydrophilic nanocomposite membranes were composed of spherical polymeric nanoparticles (NPs) synthesized through polymerization-induced self-assembly (PISA) with iron oxide NPs coated with quaternized poly(2-dimethylamino)ethyl methacrylate. The hydrophobic nanocomposite membranes were prepared via nonsolvent-induced phase separation (NIPS) containing poly (methacrylic acid) and meso-2,3-dimercaptosuccinic acid-coated superparamagnetic nanoparticles (SPNPs).

View Article and Find Full Text PDF

The growing consumer demand for natural products led to an increasing interest in vanillin production by biotechnological routes. In this work, the biotechnological vanillin production by Amycolatopsis sp. ATCC 39116 is studied using ferulic acid as precursor, aiming to achieve maximized vanillin productivities.

View Article and Find Full Text PDF
Article Synopsis
  • Broad-spectrum fluoroquinolone antibiotics, resistance genes, and viral genomes were found in wastewater samples, highlighting the need for effective monitoring.
  • Passive samplers are efficient tools for tracking antibiotic concentrations over time in wastewater, offering a simpler monitoring method.
  • A pilot-scale nanofiltration unit using the Desal 5DK membrane demonstrated high removal rates of contaminants, suggesting it is a viable treatment option for addressing chemical and biological pollutants in wastewater.
View Article and Find Full Text PDF

The objective of this work is to develop an appropriate technology for environmentally sound membrane-based purification of a tannery effluent assuring, simultaneously, the recovery of chromium, considered as the most hazardous inorganic water pollutant extensively used in leather tanning. A comparison between the permeate fluxes obtained during treatment of a synthetic tannery effluent through nanofiltration (NF270 and NF90 membranes) and reverse osmosis (BW30 and SW30) membranes was first performed. Then, a dedicated polymeric membrane was prepared by coating chitosan (cs) on a polyethersulfone (PES) microfiltration membrane (cs-PES MFO22) support.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8b5gmaacbuunsn27c240qvmutt45741t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once