Publications by authors named "Joao F Menino"

Introduction: Buruli ulcer (BU) is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance.

View Article and Find Full Text PDF

Buruli Ulcer (BU) is a neglected infectious disease caused by Mycobacterium ulcerans that is responsible for severe necrotizing cutaneous lesions that may be associated with bone involvement. Clinical presentations of BU lesions are classically classified as papules, nodules, plaques and edematous infiltration, ulcer or osteomyelitis. Within these different clinical forms, lesions can be further classified as severe forms based on focality (multiple lesions), lesions' size (>15 cm diameter) or WHO Category (WHO Category 3 lesions).

View Article and Find Full Text PDF

The human pathogenic fungus Paracoccidioides brasiliensis (Pb) undergoes a morphological transition from a saprobic mycelium to pathogenic yeast that is controlled by the cAMP-signaling pathway. There is a change in the expression of the Gβ-protein PbGpb1, which interacts with adenylate cyclase, during this morphological transition. We exploited the fact that the cAMP-signaling pathway of Saccharomyces cerevisiae does not include a Gβ-protein to probe the functional role of PbGpb1.

View Article and Find Full Text PDF

Background: The production of bioethanol from lignocellulosic feedstocks will only become economically feasible when the majority of cellulosic and hemicellulosic biopolymers can be efficiently converted into bioethanol. The main component of cellulose is glucose, whereas hemicelluloses mainly consist of pentose sugars such as D-xylose and L-arabinose. The genomes of filamentous fungi such as A.

View Article and Find Full Text PDF

To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source.

View Article and Find Full Text PDF

Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37 °C and the availability of organic sulfur compounds.

View Article and Find Full Text PDF

Background: Paracoccidioides brasiliensis causes paracoccidioidomycosis, one of the most prevalent systemic mycosis in Latin America. Thus, understanding the characteristics of the protective immune response to P. brasiliensis is of interest, as it may reveal targets for disease control.

View Article and Find Full Text PDF

Recent evidence suggests that Paracoccidioides species have the potential to undergo sexual reproduction, although no sexual cycle has been identified either in nature or under laboratory conditions. In the present work we detected low expression levels of the heterothallic MAT loci genes MAT1-1 and MAT1-2, the α-pheromone (PBα) gene, and the α- and a-pheromone receptor (PREB and PREA) genes in yeast and mycelia forms of several Paracoccidioides isolates. None of the genes were expressed in a mating type dependent manner.

View Article and Find Full Text PDF

Paracoccidioides brasiliensis budding pattern and polymorphic growth were previously shown to be closely linked to the expression of PbCDC42 and to influence the pathogenesis of the fungus. In this work we conducted a detailed morphogenetic evaluation of the yeast-forms of 11 different clinical and environmental P. brasiliensis isolates comprising four phylogenetic lineages (S1, PS2, PS3 and Pb01-like), as well as a PbCDC42 knock-down strain.

View Article and Find Full Text PDF

Paracoccidioides brasiliensis is a thermal dimorphic fungus which in the host environment exhibits a multinucleated and multibudding yeast form. The cellular and molecular mechanisms underlying these phenotypes remain to be clarified, mostly due to the absence of efficient classical genetic and molecular techniques. Here we describe a method for gene expression knockdown in P.

View Article and Find Full Text PDF