This work presents a novel Automated Machine Learning (AutoML) approach for Real-Time Fault Detection and Diagnosis (RT-FDD). The approach's particular characteristics are: it uses only data that are commonly available in industrial automation systems; it automates all ML processes without human intervention; a non-ML expert can deploy it; and it considers the behavior of cyclic sequential machines, combining discrete timed events and continuous variables as features. The capacity for fault detection is analyzed in two case studies, using data from a 3D machine simulation system with faulty and non-faulty conditions.
View Article and Find Full Text PDFThe employment of smart meters for energy consumption monitoring is essential for planning and management of power generation systems. In this context, forecasting energy consumption is a valuable asset for decision making, since it can improve the predictability of forthcoming demand to energy providers. In this work, we propose a data-driven ensemble that combines five single well-known models in the forecasting literature: a statistical linear autoregressive model and four artificial neural networks: (radial basis function, multilayer perceptron, extreme learning machines, and echo state networks).
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
August 2022
Hybrid systems, which combine statistical and machine learning (ML) techniques using residual (error forecasting) modeling, have been highlighted in the literature due to their accuracy and ability to forecast time series with different characteristics. In these architectures, a crucial task is the proper modeling of the residuals since they may present random fluctuations, complex nonlinear patterns, and heteroscedastic behavior. Hence, the selection, specification, and training of one ML model to forecast the residuals are costly and challenging tasks since issues, such as underfitting, overfitting, and misspecification, can lead to a system with low accuracy or even deteriorate the linear forecast of the time series.
View Article and Find Full Text PDF