Various methods have been proposed to estimate daily yield from partial yields, primarily to deal with unequal milking intervals. This paper offers an exhaustive review of daily milk yields, the foundation of lactation records. Seminal advancements in the late 20th century concentrated on two main adjustment metrics: additive additive correction factors (ACF) and multiplicative correction factors (MCF).
View Article and Find Full Text PDFThis study compared 3 correlational (best prediction, linear regression, and feed-forward neural networks) and 2 causal models (recursive structural equation model and recurrent neural networks) for estimating lactation milk yields. The correlational models assumed associations between test-day milk yields (health conditions), while the casual models postulated unidirectional recursive effects between these test-day variables. Wood lactation curves were used to simulate the data and served as a benchmark model.
View Article and Find Full Text PDFCows are typically milked 2 or more times on a test-day, but not all these milkings are sampled and weighed. The initial approach estimated a test-day yield with doubled morning (AM) or evening (PM) yield in the AM-PM milking plans, assuming equal AM and PM milking intervals. However, AM and PM milking intervals can vary, and milk secretion rates may be different between day and night.
View Article and Find Full Text PDFCost-effective milking plans have been adapted to supplement the standard supervised twice-daily monthly testing scheme since the 1960s. Various methods have been proposed to estimate daily milk yields (DMY), focusing on yield correction factors. The present study evaluated the performance of existing statistical methods, including a recently proposed exponential regression model, for estimating DMY using 10-fold cross-validation in Holstein and Jersey cows.
View Article and Find Full Text PDFGenetic selection has been a very successful tool for the long-term improvement of livestock populations, and the rapid adoption of genomic selection over the last decade has doubled the rate of gain in some populations. Breeding programs seek to identify genetically superior parents of the next generation, typically as a function of an index that combines information about many economically important traits into a single number. In the United States, the data that drive this system are collected through the national dairy herd improvement program that began more than a century ago.
View Article and Find Full Text PDF