Publications by authors named "Joao Casaca Carreira"

Introduction: Despite the effectiveness of exercise-based interventions on symptom management and disease progression, many people with Parkinson's Disease (PwPD) do not exercise regularly. In line with the ubiquitous use of digital health technology, the MoveONParkinson digital solution was developed, comprising a Web Platform and a Mobile App with a Conversational Agent (CA). The interface features were designed based on the principles of Social Cognitive Theory with the goal of fostering behavior change in PwPD for sustained exercise participation and improved disease management.

View Article and Find Full Text PDF

Hyperactivity of the dopaminergic pathway is thought to contribute to clinical symptoms in the early stages of Huntington's disease (HD). It is suggested to be result of a reduced dopaminergic inhibition by degeneration of medium spiny neurons in the striatum. Previously, we have shown that the number of dopaminergic cells is increased in the dorsal raphe nucleus (DRN) of HD patients and transgenic HD (tgHD) rats during the manifestation phase of the disease; as well as in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) of tgHD rats.

View Article and Find Full Text PDF

Antisense oligonucleotides (AONs) are versatile molecules that can be used to modulate gene expression by binding to RNA. The therapeutic potential of AONs appears particularly high in the central nervous system, due to excellent distribution and uptake in brain cells, as well as good tolerability in clinical trials thus far. Nonetheless, immune stimulation in response to AON treatment in the brain remains a concern.

View Article and Find Full Text PDF

Drug delivery to the central nervous system (CNS) is complicated by the blood-brain barrier. As a result, many agents that are found to be potentially effective at their site of action cannot be sufficiently or effectively delivered to the CNS and therefore have been discarded and not developed further for clinical use, leaving many CNS diseases untreated. One way to overcome this obstacle is intracerebroventricular (ICV) delivery of the therapeutics directly to cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Antisense oligonucleotide (AON) therapy is emerging as a potential treatment strategy for neurodegenerative diseases, such as spinal muscular atrophy, Huntington's disease, and amyotrophic lateral sclerosis. AONs function at the cellular level by, for example, direct interference with the expression of gene products or the molecular activation of neuroprotective pathways. However, AON therapy faces a major obstacle limiting its clinical application for central nervous system (CNS) disorders: the blood-brain barrier.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive autosomal dominant disease, caused by a CAG repeat expansion in the HTT gene, resulting in an expanded polyglutamine stretch at the N-terminal of the huntingtin protein. An important event in HD pathogenesis appears to be the proteolysis of the mutant protein, which forms N-terminal huntingtin fragments. These fragments form insoluble aggregates and are found in nuclei and cytoplasm of affected neurons where they interfere with normal cell functioning.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded CAG repeat. The clinical features are progressive motor dysfunction, cognitive deterioration, and psychiatric disturbances. Unpredictable choreic movements, among the most characteristic hallmarks, may contribute to gait disturbances and loss of balance in HD individuals.

View Article and Find Full Text PDF

Acetylcholine plays a role in mnemonic and attentional processes, but also in locomotor and anxiety-related behavior. Receptor blockage by scopolamine can therefore induce cognitive as well as motor deficits and increase anxiety levels. Here we show that scopolamine, at a dose that has previously been found to affect learning and memory performance (0.

View Article and Find Full Text PDF

Clinically, Huntington's disease (HD) is well known for the predominant motor symptom chorea, which is a hyperkinetic motor disorder. The only experimental model currently described in the literature, as far as we are aware of, exhibiting hyperkinetic movements is the transgenic rat model of HD. We assessed and characterized these hyperkinetic movements in detail and investigated the effect of tetrabenazine (TBZ) treatment.

View Article and Find Full Text PDF

Several animal models for Huntington's disease (HD) have been created in order to investigate mechanisms of disease, and to evaluate the potency of novel therapies. Here, we describe the characteristics of the two transgenic rat models: transgenic rat model of HD (fragment model) and the Bacterial Artificial Chromosome HD model (full-length model). We discuss their genetic, behavioural, neuropathological and neurophysiological features.

View Article and Find Full Text PDF