The analysis of meta-omics data requires the utilization of several bioinformatics tools and proficiency in informatics. The integration of multiple meta-omics data is even more challenging, and the outputs of existing bioinformatics solutions are not always easy to interpret. Here, we present a meta-omics bioinformatics pipeline, Meta-Omics Software for Community Analysis (MOSCA), which aims to overcome these limitations.
View Article and Find Full Text PDFPlastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions.
View Article and Find Full Text PDFGenome-scale metabolic models (GEMs) are essential tools for phenotype prediction and strain optimisation. The most straightforward GEMs reconstruction approach uses published models as templates to generate the initial draft, requiring further curation. Such an approach is used by BiGG Integration Tool (BIT), available for users.
View Article and Find Full Text PDFOmics and meta-omics technologies are powerful approaches to explore microorganisms' functions, but the sheer size and complexity of omics datasets often turn the analysis into a challenging task. Software developed for omics and -omics analyses, together with knowledgebases encompassing information on genes, proteins, taxonomic and functional annotation, among other types of information, are valuable resources for analyzing omics data. Although several bioinformatics resources are available for -omics analyses, many require significant computational expertise.
View Article and Find Full Text PDFBiosorbent materials are effective in the removal of spilled oil from water, but their effect on hydrocarbonoclastic bacteria is not known. Here, we show that corksorb, a cork-based biosorbent, enhances growth and alkane degradation by B4 (Ro) and SK2 (Ab). Ro and Ab degraded 96 ± 1% and 72 ± 2%, respectively, of a mixture of -alkanes (2 g L) in the presence of corksorb.
View Article and Find Full Text PDFLong-chain fatty acids (LCFA) are common contaminants in municipal and industrial wastewater that can be converted anaerobically to methane. A low hydrogen partial pressure is required for LCFA degradation by anaerobic bacteria, requiring the establishment of syntrophic relationships with hydrogenotrophic methanogens. However, high LCFA loads can inhibit methanogens, hindering biodegradation.
View Article and Find Full Text PDF