Gd(3)L is a trinuclear Gd(3+) complex of intermediate size, designed for contrast agent applications in high field magnetic resonance imaging (H(12)L is based on a trimethylbenzene core bearing three methylene-diethylenetriamine- N,N,N'',N''-tetraacetate moieties). Thanks to its appropriate size, the presence of two inner sphere water molecules and a fast water exchange, Gd(3)L has remarkable proton relaxivities at high magnetic field (r(1) = 10.2 vs 3.
View Article and Find Full Text PDFA novel ligand, H(12)L, based on a trimethylbenzene core bearing three methylenediethylenetriamine-N,N,N'',N''-tetraacetate moieties (-CH(2)DTTA(4-)) for Gd(3+) chelation has been synthesized, and its trinuclear Gd(3+) complex [Gd(3)L(H(2)O)(6)](3-) investigated with respect to MRI contrast agent applications. A multiple-field, variable-temperature (17)O NMR and proton relaxivity study on [Gd(3)L(H(2)O)(6)](3-) yielded the parameters characterizing water exchange and rotational dynamics. On the basis of the (17)O chemical shifts, bishydration of Gd(3+) could be evidenced.
View Article and Find Full Text PDFThe heterotritopic ligand [bpy(DTTA)2]8- has two diethylenediamine-tetraacetate units for selective lanthanide(III) coordination and one bipyridine function for selective Fe(II) coordination. In aqueous solution and in the presence of these metals, the ligand is capable of self-assembly to form a rigid supramolecular metallostar structure, [Fe[Gd2bpy(DTTA)2(H2O)4]3]4-. We report here the physicochemical characterization of the dinuclear complex [Gd2bpy(DTTA)2(H2O)4]2- and the metallostar [Fe[Gd2bpy(DTTA)2(H2O)4]3]4- with regard to potential MRI contrast agent applications.
View Article and Find Full Text PDF