The genetic basis of nonsyndromic familial nonmedullary thyroid carcinoma (FNMTC) is still poorly understood, as the susceptibility genes identified so far only account for a small percentage of the genetic burden. Recently, germline mutations in DNA repair-related genes have been reported in cases with thyroid cancer. In order to clarify the genetic basis of FNMTC, 94 genes involved in hereditary cancer predisposition, including DNA repair genes, were analyzed in 48 probands from FNMTC families, through targeted next-generation sequencing (NGS).
View Article and Find Full Text PDFApproximately 5 to 15% of nonmedullary thyroid cancers (NMTC) present in a familial form (familial nonmedullary thyroid cancers [FNMTC]). The genetic basis of FNMTC remains largely unknown, representing a limitation for diagnostic and clinical management. Recently, germline mutations in DNA repair-related genes have been described in cases with thyroid cancer (TC), suggesting a role in FNMTC etiology.
View Article and Find Full Text PDFLung cancer is a lethal disease with no truly efficient therapeutic management despite the progresses, and metabolic profiling can be a way of stratifying patients who may benefit from new therapies. The present study is dedicated to profiling cysteine metabolic pathways in NSCLC cell lines and tumor samples. This was carried out by analyzing hydrogen sulfide (HS) and ATP levels, examining mRNA and protein expression patterns of cysteine catabolic enzymes and transporters, and conducting metabolomics analysis using nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
February 2024
Cutaneous melanoma (CM) is the most aggressive skin cancer, showing globally increasing incidence. Hereditary CM accounts for a significant percentage (5-15 %) of all CM cases. However, most familial cases remain without a known genetic cause.
View Article and Find Full Text PDFGlycosyltransferases (GTs) are enzymes that catalyze the formation of glycosidic bonds and hundreds of GTs have been identified so far in humans. Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) has been associated with central nervous system diseases and cancer. However, evidence on its enzymatic properties, including its substrates, has been scarcely described.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
October 2023
Medium chain acyl-CoA dehydrogenase (MCAD) deficiency (MCADD) is associated with ACADM gene mutations, leading to an impaired function and/or structure of MCAD. Importantly, after import into the mitochondria, MCAD must incorporate a molecule of flavin adenine dinucleotide (FAD) per subunit and assemble into tetramers. However, the effect of MCAD amino acid substitutions on FAD incorporation has not been investigated.
View Article and Find Full Text PDFThe structural maintenance of therapeutic proteins during formulation and/or storage is a critical aspect, particularly for multi-domain and/or multimeric proteins which usually exhibit intrinsic structural dynamics leading to aggregation with concomitant loss-of-function. Protein freeze-drying is a widely used technique to preserve protein structure and function during storage. To minimize chemical/physical stresses occurring during this process, protein stabilizers are usually included, their effect being strongly dependent on the target protein.
View Article and Find Full Text PDFEntomopathogenic nematodes are used as biological control agents against a broad range of insect pests. We ascribed the pathogenicity of these organisms to the excretory/secretory products (ESP) released by the infective nematode. Our group characterized different virulence factors produced by that underlie its success as an insect pathogen.
View Article and Find Full Text PDFIn this review encouraged by original data, we first provided in vivo evidence that the kidney, comparative to the liver or brain, is an organ particularly rich in cysteine. In the kidney, the total availability of cysteine was higher in cortex tissue than in the medulla and distributed in free reduced, free oxidized and protein-bound fractions (in descending order). Next, we provided a comprehensive integrated review on the evidence that supports the reliance on cysteine of the kidney beyond cysteine antioxidant properties, highlighting the relevance of cysteine and its renal metabolism in the control of cysteine excess in the body as a pivotal source of metabolites to kidney biomass and bioenergetics and a promoter of adaptive responses to stressors.
View Article and Find Full Text PDFThe 'gasotransmitters' hydrogen sulfide (HS), nitric oxide (NO), and carbon monoxide (CO) act as second messengers in human physiology, mediating signal transduction via interaction with or chemical modification of protein targets, thereby regulating processes such as neurotransmission, blood flow, immunomodulation, or energy metabolism. Due to their broad reactivity and potential toxicity, the biosynthesis and breakdown of HS, NO, and CO are tightly regulated. Growing evidence highlights the active role of gasotransmitters in their mutual cross-regulation.
View Article and Find Full Text PDFAmong gynecologic malignancies, ovarian cancer is the third most prevalent and the most common cause of death, especially due to diagnosis at an advanced stage together with resistance to therapy. As a solid tumor grows, cancer cells in the microenvironment are exposed to regions of hypoxia, a selective pressure prompting tumor progression and chemoresistance. We have previously shown that cysteine contributes to the adaptation to this hypoxic microenvironment, but the mechanisms by which cysteine protects ovarian cancer cells from hypoxia-induced death are still to be unveiled.
View Article and Find Full Text PDFOur general goal was to non-invasively evaluate kidney tubular dysfunction. We developed a strategy based on cysteine (Cys) disulfide stress mechanism that underlies kidney dysfunction. There is scarce information regarding the fate of Cys-disulfides (CysSSX), but evidence shows they might be detoxified in proximal tubular cells by the action of N-acetyltransferase 8 (NAT8).
View Article and Find Full Text PDFPyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-coenzyme A, hinging glycolysis and the tricarboxylic acid cycle. PDC deficiency, an inborn error of metabolism, has a broad phenotypic spectrum. Symptoms range from fatal lactic acidosis or progressive neuromuscular impairment in the neonatal period, to chronic neurodegeneration.
View Article and Find Full Text PDFTo enable survival in adverse conditions, cancer cells undergo global metabolic adaptations. The amino acid cysteine actively contributes to cancer metabolic remodelling on three different levels: first, in its free form, in redox control, as a component of the antioxidant glutathione or its involvement in protein s-cysteinylation, a reversible post-translational modification; second, as a substrate for the production of hydrogen sulphide (HS), which feeds the mitochondrial electron transfer chain and mediates per-sulphidation of ATPase and glycolytic enzymes, thereby stimulating cellular bioenergetics; and, finally, as a carbon source for epigenetic regulation, biomass production and energy production. This review will provide a systematic portrayal of the role of cysteine in cancer biology as a source of carbon and sulphur atoms, the pivotal role of cysteine in different metabolic pathways and the importance of HS as an energetic substrate and signalling molecule.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
February 2021
Sulfane sulfur species comprise a variety of biologically relevant hydrogen sulfide (HS)-derived species, including per- and poly-sulfidated low molecular weight compounds and proteins. A growing body of evidence suggests that HS, currently recognized as a key signaling molecule in human physiology and pathophysiology, plays an important role in cancer biology by modulating cell bioenergetics and contributing to metabolic reprogramming. This is accomplished through functional modulation of target proteins via HS binding to heme iron centers or HS-mediated reversible per- or poly-sulfidation of specific cysteine residues.
View Article and Find Full Text PDFBackground: The pyruvate dehydrogenase complex (PDC) catalyzes the irreversible decarboxylation of pyruvate into acetyl-CoA. PDC deficiency can be caused by alterations in any of the genes encoding its several subunits. The resulting phenotype, though very heterogeneous, mainly affects the central nervous system.
View Article and Find Full Text PDFMetabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior.
View Article and Find Full Text PDFCutaneous melanoma is one of the most aggressive human cancers due to its high invasiveness. Germline mutations in high-risk melanoma susceptibility genes have been associated with development hereditary melanoma; however, most genetic culprits remain elusive. To unravel novel susceptibility genes for hereditary melanoma, we performed whole exome sequencing (WES) on eight patients with multiple primary melanomas, high number of nevi, and negative for high and intermediate-risk germline mutations.
View Article and Find Full Text PDFHydrogen sulfide (HS), while historically perceived merely as a toxicant, has progressively emerged as a key regulator of numerous processes in mammalian physiology, exerting its signaling function essentially through interaction with and/or modification of proteins, targeting mainly cysteine residues and metal centers. As a gaseous signaling molecule that freely diffuses across aqueous and hydrophobic biological milieu, it has been designated the third 'gasotransmitter' in mammalian physiology. HS is synthesized and detoxified by specialized endogenous enzymes that operate under a tight regulation, ensuring homeostatic levels of this otherwise toxic molecule.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFOvarian cancer is the main cause of death from gynecological cancer, with its poor prognosis mainly related to late diagnosis and chemoresistance (acquired or intrinsic) to conventional alkylating and reactive oxygen species (ROS)-generating drugs. We and others reported that the availability of cysteine and glutathione (GSH) impacts the mechanisms of resistance to carboplatin in ovarian cancer. Different players in cysteine metabolism can be crucial in chemoresistance, such as the cystine/glutamate antiporter system Xc (xCT) and the HS-synthesizing enzyme cystathionine β-synthase (CBS) in the pathway of cysteine catabolism.
View Article and Find Full Text PDFHuman phenylalanine hydroxylase (hPAH) hydroxylates L-phenylalanine (L-Phe) to L-tyrosine, a precursor for neurotransmitter biosynthesis. Phenylketonuria (PKU), caused by mutations in PAH that impair PAH function, leads to neurological impairment when untreated. Understanding the hPAH structural and regulatory properties is essential to outline PKU pathophysiological mechanisms.
View Article and Find Full Text PDFHydrogen sulfide (HS) is an endogenously produced signaling molecule. The enzymes 3-mercaptopyruvate sulfurtransferase (MST), partly localized in mitochondria, and the inner mitochondrial membrane-associated sulfide:quinone oxidoreductase (SQR), besides being respectively involved in the synthesis and catabolism of HS, generate sulfane sulfur species such as persulfides and polysulfides, currently recognized as mediating some of the HS biological effects. Reprogramming of HS metabolism was reported to support cellular proliferation and energy metabolism in cancer cells.
View Article and Find Full Text PDFHydrogen sulfide (HS), a known inhibitor of cytochrome oxidase (CcOX), plays a key signaling role in human (patho)physiology. HS is synthesized endogenously and mainly metabolized by a mitochondrial sulfide-oxidizing pathway including sulfide:quinone oxidoreductase (SQR), whereby HS-derived electrons are injected into the respiratory chain stimulating O consumption and ATP synthesis. Under hypoxic conditions, HS has higher stability and is synthesized at higher levels with protective effects for the cell.
View Article and Find Full Text PDF