Publications by authors named "Joao B P Soares"

Developing thermally stable reverse osmosis membranes is a potential game-changer in high-temperature water treatment. In this work, the performance of three commercial reverse osmosis membranes was evaluated with a series of high-temperature filtrations. The membranes were tested with different filtration methodologies: long-term operation, cyclic tests, controlled stepwise temperature increment, and permeability tests.

View Article and Find Full Text PDF

Despite being widely used in tailings treatment, polyacrylamide continues to face performance challenges. In this study, two commercial polyacrylamides with different molecular weights were used to flocculate iron ore tailings and their performance was compared with two polymers designed to treat oil sand tailings: poly(vinylbenzyl)trimethylammonium chloride and partially hydrolyzed poly(methyl acrylate) grafted onto ethylene-propylene-diene copolymer backbones. The polyacrylamide with the highest molecular weight performed better than the one with the lowest molecular weight, but its efficiency was still considerably lower than what would be desired for good solid-liquid separation.

View Article and Find Full Text PDF

Organic mixed ionic-electronic conductors (OMIECs), which transport both ionic and electronic charges, development are important for progressing bioelectronic and energy storage devices. The p-type OMIECs are extensively investigated and used in various applications, whereas the n-type ones lag far behind due to their moisture and air instability. Here, we report the synthesis of the novel n-type naphthalene diimide (NDI)-based small-molecule OMIECs for organic electrochemical transistors (OECTs).

View Article and Find Full Text PDF

Phase-selective organogelators that gel oils from oil/water mixtures are useful to remediate oil spills on water. We designed and synthesized polymer organogelators, poly(styrene--10-undecenoic acid) with five different 10-undecenoic acid contents that could be added as powders at room temperature to gel oils with different viscosities. The morphologies and mechanical strengths of the gels were investigated using field-emission electron microscopy and rheological measurements, respectively.

View Article and Find Full Text PDF

Finding an efficient and economical method to remediate oil spills on water is a priority worldwide. In this article, we propose a solution to this problem using polystyrene magnetic nanocomposite blends composed of polystyrene chains grafted on the surface of silica coated on iron oxide nanoparticles and polystyrene. The hydrophobic and oleophilic magnetic polymer nanocomposite collected oil from the water surface quickly and efficiently.

View Article and Find Full Text PDF

Despite growing demands for high-temperature wastewater treatment, most available polymeric membranes are limited to mild operating temperatures (<50 °C) and become less efficient at high temperatures. Herein we show how to make thermally stable reverse osmosis thin-film nanocomposite (TFN) membranes by embedding nanodiamond (ND) particles. Polyamide composite layers containing different loadings of surface-modified ND particles were synthesized through interfacial polymerization.

View Article and Find Full Text PDF

Developing thermally stable polymer membranes for high-temperature water treatment is in high demand, as the recommended usage temperatures of most commercial membranes are lower than 50 °C. In this study, we synthesized novel thin film composite polyamide membranes by modifying the chemical structure of their selective layers. Triaminopyrimidine was used to synthesize a polyamide selective layer with high cross-linking density over a microporous poly(ether sulfone) support.

View Article and Find Full Text PDF

Nanocomposites composed of polyacrylamide and nanoclay were synthesized via free-radical cross-linking polymerization and used to adsorb Co and Ni ions from water. The polyacrylamide (PAM)/sodium montmorillonite (Na-MMT) nanocomposites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy to confirm the interaction between montmorillonite and the polymer matrix. The effects of pH and heavy metal ion concentration on the adsorption capacity of PAM/Na-MMT were evaluated to determine suitable operating conditions for further experiments.

View Article and Find Full Text PDF

Effective oil spill preparedness and response are crucial to ensure environmental protection and promote the responsible development of the petroleum industry. Hence, interest in developing new approaches and/or improving existing oil spill response measures has increased greatly in the past decade. Solidifiers are an attractive and underutilized option to mitigate the effects of oil spills, as they interact with oil to contain the spill, prevent it from spreading, and facilitate its removal from the environment.

View Article and Find Full Text PDF

The generation of tailings as a by product of the bitumen extraction process is one of the largest environmental footprints of oil sands operations. Most of the tailings treatment technologies use polymer flocculants to induce solid-liquid separation. However, due to the complex composition of tailings, conventional flocculants cannot reach the same performance achieved in other wastewater treatments.

View Article and Find Full Text PDF

A series of multifunctional terpolymers, poly(N-isopropyl acrylamide/2-(methacryloyloxy) ethyl trimethyl ammonium chloride/N-tert-butylacrylamide) [P(NIPAM-MATMAC-BAAM)], were designed to flocculate and dewater oil sands mature fine tailings (MFT). The hydrophobic BAAM comonomer helped in expelling water from the sediments, while the cationic MATMAC comonomer promoted the charge neutralization of negatively charged particles suspended in MFT. The chemical composition distributions of these terpolymers were designed based on the knowledge of the reactivity ratios of all comonomers, instead of by trial and error, as usually done for most polymer flocculants.

View Article and Find Full Text PDF

Polymer-driven flocculation and dewatering of mature fine tailings (MFT) is critical to improve their consolidation. MFT flocculation and dewatering depends on the size of the suspended clay particles, and on the composition and properties of the liquid in which they are dispersed. The effect of water chemistry on the polymer-particle dynamics is nontrivial, particularly for non-spherical, polydisperse particles such as natural clays.

View Article and Find Full Text PDF

Hydrophobically modified acrylamide copolymers dewater oil sands tailings more effectively than anionic polyacrylamide, but the root causes for this enhanced performance have not been investigated systematically. Polyacrylamide-poly(ethylene oxide methyl ether methacrylate) copolymers with different comonomer compositions, hydrophobic chain lengths, and molecular weights to map out these effects systematically are synthetized. Through a statistical design of experiments, it is found out that all three variables above significantly affected flocculation performance and that certain combinations achieve optimal results.

View Article and Find Full Text PDF

This work investigates the effect of multifunctional poly (N-isopropyl acrylamide/acrylic acid/N-tert-butylacrylamide) [p(NIPAM-AA-NTBA)] ternary polymer on the sedimentation of kaolin clay - a major fraction of oil sands tailings. A series of linear, uncross-linked p(NIPAM), p(NIPAM/AA), and p(NIPAM/AA/NTBM) were synthesized as random copolymers, where all monomer units were randomly arranged along the polymer backbone and connected by covalent bonds. The ternary copolymer, used as a flocculant, exhibited thermo-sensitivity, anionic nature, and hydrophobic association due to NIPAM, AA, and NTBM, respectively.

View Article and Find Full Text PDF

The need for new and/or improvement of existing oil spill remediation measures has increased substantially amidst growing public concern with the increased transportation of unconventional crudes, such as diluted bitumen products. Solidifiers may be a very good spill response measure to contain and mitigate the effects of oil discharge incidents, as these interact with the oil to limit hydrocarbon release into air and water, prevent it from adhering onto sediment and debris, and could allow for oil recovery and reuse. Solidifiers change the physical state of the spilled oil from liquid to a coherent mass by chemical interactions between the spilled oil and the solidifier.

View Article and Find Full Text PDF

We synthesized hydrolytically degradable cationic polymers by micellar radical polymerization of a short-chain polyester macromonomer, polycaprolactone choline iodide ester methacrylate (PCLChMA) with two polyester units, and used them to flocculate oil sands mature fine tailings (MFT). We evaluated the flocculation performance of the homopolymer and copolymers with 30 mol % acrylamide (AM) by measuring initial settling rate (ISR), supernatant turbidity, and capillary suction time (CST) of the sediments. Flocculants made with trimethylaminoethyl methacrylate chloride (TMAEMC), the monomer corresponding to PCLChMA with n = 0, have improved performance over poly(PCLChMA) at equivalent loadings due to their higher charge density per gram of polymer.

View Article and Find Full Text PDF

Polyolefins made with Ziegler-Natta catalysts have non-uniform distributions of molecular weight (MWD) and chemical composition (CCD). The MWD is usually measured by high-temperature gel permeation chromatography (GPC) and the CCD by either temperature rising elution fractionation (TREF) or crystallization analysis fractionation (CRYSTAF). A mathematical model is needed to quantify the information provided by these analytical techniques and to relate it to the presence of multiple site types on Ziegler-Natta catalysts.

View Article and Find Full Text PDF