Publications by authors named "Joanne X Shen"

Sex-based differences in obesity-related hepatic malignancies suggest the protective roles of estrogen. Using a preclinical model, we dissected estrogen receptor (ER) isoform-driven molecular responses in high-fat diet (HFD)-induced liver diseases of male and female mice treated with or without an estrogen agonist by integrating liver multi-omics data. We found that selective ER activation recovers HFD-induced molecular and physiological liver phenotypes.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied special immune cells in the liver that help protect against problems caused by obesity.
  • They found that these helpful cells get fewer in number when people are obese.
  • The research suggests that trying to boost these protective cells could help fight against liver diseases linked to obesity.
View Article and Find Full Text PDF

Aberrant glucose homeostasis is the most common metabolic disturbance affecting one in ten adults worldwide. Prediabetic hyperglycemia due to dysfunctional interactions between different human tissues, including pancreas and liver, constitutes the largest risk factor for the development of type 2 diabetes. However, this early stage of metabolic disease has received relatively little attention.

View Article and Find Full Text PDF

The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time.

View Article and Find Full Text PDF

Background And Aims: Oxidative stress plays a key role in the development of metabolic complications associated with obesity, including insulin resistance and the most common chronic liver disease worldwide, nonalcoholic fatty liver disease. We have recently discovered that the microRNA miR-144 regulates protein levels of the master mediator of the antioxidant response, nuclear factor erythroid 2-related factor 2 (NRF2). On miR-144 silencing, the expression of NRF2 target genes was significantly upregulated, suggesting that miR-144 controls NRF2 at the level of both protein expression and activity.

View Article and Find Full Text PDF

Obesity and type 2 diabetes are strongly associated with adipose tissue dysfunction and impaired adipogenesis. Understanding the molecular underpinnings that control adipogenesis is thus of fundamental importance for the development of novel therapeutics against metabolic disorders. However, translational approaches are hampered as current models do not accurately recapitulate adipogenesis.

View Article and Find Full Text PDF

Adipocytes are specialized cells with pleiotropic roles in physiology and pathology. Several types of fat cells with distinct metabolic properties coexist in various anatomically defined fat depots in mammals. White, beige, and brown adipocytes differ in their handling of lipids and thermogenic capacity, promoting differences in size and morphology.

View Article and Find Full Text PDF

High-aspect-ratio and hierarchically nanostructured surfaces are common in nature. Synthetic variants are of interest for their specific chemical, mechanic, electric, photonic, or biologic properties but are cumbersome in fabrication or suffer from structural collapse. Here, we replicated and directly biofunctionalized robust, large-area, and high-aspect-ratio nanostructures by nanoimprint lithography of an off-stoichiometric thiol-ene-epoxy polymer.

View Article and Find Full Text PDF
Article Synopsis
  • AI identified baricitinib as an effective treatment for SARS-CoV-2 pneumonia, showing a 71% mortality benefit in severely ill patients while indicating low adverse effects.
  • In elderly patients (median age 81), a majority were able to recover, and additional cases with mild symptoms also showed positive outcomes.
  • The drug works by inhibiting certain host proteins, impacting virus entry and replication, and has revealed mechanisms that justify further clinical trials to confirm its effectiveness.
View Article and Find Full Text PDF

Obesity and insulin resistance are risk factors for nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease worldwide. Because no approved medication nor an accurate and noninvasive diagnosis is currently available for NAFLD, there is a clear need to better understand the link between obesity and NAFLD. Lipid accumulation during obesity is known to be associated with oxidative stress and inflammatory activation of liver macrophages (LMs).

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is a major concern for the pharmaceutical industry and constitutes one of the most important reasons for the termination of promising drug development projects. Reliable prediction of DILI liability in preclinical stages is difficult, as current experimental model systems do not accurately reflect the molecular phenotype and functionality of the human liver. As a result, multiple drugs that passed preclinical safety evaluations failed due to liver toxicity in clinical trials or postmarketing stages in recent years.

View Article and Find Full Text PDF

Despite extensive breakthroughs in chemistry, molecular biology, and genetics in the last decades, the success rates of drug development projects remain low. To improve predictions of clinical efficacy and safety of new compounds, a plethora of 3D culture methods of human cells have been developed in which the cultured cells retain physiologically and functionally relevant phenotypes for multiple weeks. Here, we critically review current paradigms for organotypic cultures of human liver, gut, and kidney such as perfused microchips, spheroids, and hollow fiber bioreactors and discuss their utility for understanding drug pharmacokinetics, metabolism, and toxicity.

View Article and Find Full Text PDF

Development of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of LHX1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity.

View Article and Find Full Text PDF