Proteolysis of the β C-terminal fragment (β-CTF) of the amyloid precursor protein generates the Aβ peptides associated with Alzheimer's disease. Familial mutations in the β-CTF, such as the A21G Flemish mutation, can increase Aβ secretion. We establish how the Flemish mutation alters the structure of C55, the first 55 residues of the β-CTF, using FTIR and solid-state NMR spectroscopy.
View Article and Find Full Text PDFExtensive research efforts have been conducted over the past decades to understand the processing of the Amyloid Precursor Protein (APP). APP cleavage leads to the production of the beta-amyloid peptide (Abeta), which is the major constituent of the amyloid core of senile plaques found in the brains of patients with Alzheimer disease (AD). Abeta is produced by the sequential cleavage of APP by beta- and gamma-secretases.
View Article and Find Full Text PDFConstitutively active JAK2V617F and thrombopoietin receptor (TpoR) W515L/K mutants are major determinants of human myeloproliferative neoplasms (MPNs). We show that a TpoRW515 mutation (W515A), which we detected in 2 myelofibrosis patients, and the Delta5TpoR active mutant, where the juxtamembrane R/KW(515)QFP motif is deleted, induce a myeloproliferative phenotype in mouse bone marrow reconstitution experiments. This phenotype required cytosolic Y112 of the TpoR.
View Article and Find Full Text PDFThe beta-amyloid peptide (Abeta) is the major constituent of the amyloid core of senile plaques found in the brain of patients with Alzheimer disease. Abeta is produced by the sequential cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases. Cleavage of APP by gamma-secretase also generates the APP intracellular C-terminal domain (AICD) peptide, which might be involved in regulation of gene transcription.
View Article and Find Full Text PDFPhosphorylation of human APP695 at Thr668 seems to be specific to neuronal tissue and could affect Abeta production. Metabolism of APP mutated at Thr668 residue was analyzed in CHO cell line and primary cultures of rat cortical neurons. By site-directed mutagenesis, T668A or T668D substitutions were introduced in wild-type APP695.
View Article and Find Full Text PDF