Publications by authors named "Joanne Marsh"

Background: The species Neorhizobium galegae comprises two symbiovars that induce nodules on Galega plants. Strains of both symbiovars, orientalis and officinalis, induce nodules on the same plant species, but fix nitrogen only in their own host species. The mechanism behind this strict host specificity is not yet known.

View Article and Find Full Text PDF

The marine natural product (+)-spongistatin 1 is an extremely potent growth inhibitory agent having activity against a wide variety of cancer cell lines, while exhibiting low cytotoxicity against quiescent human fibroblasts. Consistent with a microtubule-targeting mechanism of action, (+)-spongistatin 1 causes mitotic arrest in DU145 human prostate cancer cells. More importantly, (+)-spongistatin 1 exhibits significant in vivo antitumor activity in the LOX-IMVI human melanoma xenograft model.

View Article and Find Full Text PDF
Article Synopsis
  • E7974 is a synthetic version of a compound from marine sponges called hemiasterlin, and it works by disrupting tubulin, which is essential for cell division.
  • Like vinblastine, E7974 inhibits tubulin polymerization and causes cancer cells to stop dividing, leading to cell death (apoptosis) after prolonged blocking in the G2-M phase of the cell cycle.
  • The drug primarily targets alpha-tubulin rather than beta-tubulin, suggesting that E7974 and similar compounds might have a unique mechanism of action among tubulin-targeting anticancer drugs.
View Article and Find Full Text PDF

We report here that des-methyl, des-amino pateamine A (DMDA-PatA), a structurally simplified analogue of the marine natural product pateamine A, has potent antiproliferative activity against a wide variety of human cancer cell lines while showing relatively low cytotoxicity against nonproliferating, quiescent human fibroblasts. DMDA-PatA retains almost full in vitro potency in P-glycoprotein-overexpressing MES-SA/Dx5-Rx1 human uterine sarcoma cells that are significantly resistant to paclitaxel, suggesting that DMDA-PatA is not a substrate for P-glycoprotein-mediated drug efflux. Treatment of proliferating cells with DMDA-PatA leads to rapid shutdown of DNA synthesis in the S phase of the cell cycle.

View Article and Find Full Text PDF

Purpose: The present studies evaluated the ability of injectable, biodegradable microspheres releasing carboplatin, doxorubicin, or 5-fluorouracil to suppress the growth of solid tumors implanted subcutaneously or intramuscularly.

Methods: Seven to 10 days after implantation of MATB-III cells, rats received systemic chemotherapy, intratumoral bolus chemotherapy, or injections of chemotherapeutic microspheres into the tumor center or multiple sites along the outer perimeter of the tumor.

Results: A single treatment with carboplatin, doxorubicin, or 5-fluorouracil microspheres along the perimeter of the tumors produced a significant, dose-related suppression in tumor growth, relative to injections directly into the tumor center.

View Article and Find Full Text PDF