Publications by authors named "Joanne Mackinnon"

Here, we report the complete genome sequences for 36 Canadian isolates of subsp. serovar Typhimurium and its monophasic variant I 1,4,[5]:12:i:- from both clinical and animal sources. These genome sequences will provide useful references for understanding the genetic variation within this prominent serotype.

View Article and Find Full Text PDF
Article Synopsis
  • A new RNase H2-dependent PCR (rhPCR) genotyping assay has been developed to identify specific lineages and sub-lineages of Salmonella Heidelberg using single-nucleotide polymorphisms (SNPs).
  • The assay involves a series of 28 reactions targeting 14 specific DNA bases, effectively distinguishing 15 potential genetic groups of SH.
  • It demonstrates accuracy in identifying Salmonella strains, correlates with whole genome sequencing data, and shows promise for practical use in outbreak investigations and tracking sources of infection.
View Article and Find Full Text PDF

Cronobacter sakazakii, an opportunistic pathogen found in milk-based powdered infant formulae, has been linked to meningitis in infants, with high fatality rates. A set of phages from various environments were purified and tested in vitro against strains of C. sakazakii.

View Article and Find Full Text PDF

Here, we report the first complete genome sequence of Actinobacillus suis, an important opportunistic pathogen of swine. By comparing the genome sequence of A. suis with those of other members of the family Pasteurellaceae, we hope to better understand the role of these organisms in health and disease in swine.

View Article and Find Full Text PDF

Campylobacter spp. are a leading cause of bacterial gastroenteritis worldwide. The need for molecular subtyping methods with enhanced discrimination in the context of surveillance- and outbreak-based epidemiologic investigations of Campylobacter spp.

View Article and Find Full Text PDF

Campylobacter spp. may be responsible for unreported outbreaks of food-borne disease. The detection of these outbreaks is made more difficult by the fact that appropriate methods for detecting clusters of Campylobacter have not been well defined.

View Article and Find Full Text PDF

Background: Multi-Locus Sequence Typing (MLST) has emerged as a leading molecular typing method owing to its high ability to discriminate among bacterial isolates, the relative ease with which data acquisition and analysis can be standardized, and the high portability of the resulting sequence data. While MLST has been successfully applied to the study of the population structure for a number of different bacterial species, it has also provided compelling evidence for high rates of recombination in some species. We have analyzed a set of Campylobacter jejuni strains using MLST and Comparative Genomic Hybridization (CGH) on a full-genome microarray in order to determine whether recombination and high levels of genomic mosaicism adversely affect the inference of strain relationships based on the analysis of a restricted number of genetic loci.

View Article and Find Full Text PDF

One hundred forty-one Campylobacter jejuni isolates from humans with diarrhea and 100 isolates from retailed poultry meat were differentiated by flaA typing. The bacteria were isolated in a specific geographical area (Dunedin) in New Zealand over a common time period. Twenty nine flaA types were detected, one of which (flaA restriction fragment length polymorphism type 15 [flaA-15]) predominated among isolates from humans ( approximately 30% of isolates).

View Article and Find Full Text PDF