NADPH, a highly compartmentalized electron donor in mammalian cells, plays essential roles in cell metabolism. However, little is known about how cytosolic and mitochondrial NADPH dynamics relate to cancer cell growth rates in response to varying nutrient conditions. To address this issue, we present NADPH composite index analysis, which quantifies the relationship between compartmentalized NADPH dynamics and growth rates using genetically encoded NADPH sensors, automated image analysis pipeline, and correlation analysis.
View Article and Find Full Text PDFMany metabolic phenotypes in cancer cells are also characteristic of proliferating nontransformed mammalian cells, and attempts to distinguish between phenotypes resulting from oncogenic perturbation from those associated with increased proliferation are limited. Here, we examined the extent to which metabolic changes corresponding to oncogenic KRAS expression differed from those corresponding to epidermal growth factor (EGF)-driven proliferation in human mammary epithelial cells (HMECs). Removal of EGF from culture medium reduced growth rates and glucose/glutamine consumption in control HMECs despite limited changes in respiration and fatty acid synthesis, while the relative contribution of branched-chain amino acids to the TCA cycle and lipogenesis increased in the near-quiescent conditions.
View Article and Find Full Text PDFBackground: The study of cancer metabolism has been largely dedicated to exploring the hypothesis that oncogenic transformation rewires cellular metabolism to sustain elevated rates of growth and division. Intense examination of tumors and cancer cell lines has confirmed that many cancer-associated metabolic phenotypes allow robust growth and survival; however, little attention has been given to explicitly identifying the biochemical requirements for cell proliferation in a rigorous manner in the context of cancer metabolism.
Results: Using a well-studied hybridoma line as a model, we comprehensively and quantitatively enumerate the metabolic requirements for generating new biomass in mammalian cells; this indicated a large biosynthetic requirement for ATP, NADPH, NAD(+), acetyl-CoA, and amino acids.
Am J Physiol Heart Circ Physiol
October 2016
In many forms of cardiomyopathy, alterations in energy substrate metabolism play a key role in disease pathogenesis. Stable isotope tracing in rodent heart perfusion systems can be used to determine cardiac metabolic fluxes, namely those relative fluxes that contribute to pyruvate, the acetyl-CoA pool, and pyruvate anaplerosis, which are critical to cardiac homeostasis. Methods have previously been developed to interrogate these relative fluxes using isotopomer enrichments of measured metabolites and algebraic equations to determine a predefined metabolic flux model.
View Article and Find Full Text PDFCholesterol is a lipid that is critical for steroid hormone production and the integrity of cellular membranes, and, as such, it is essential for cell growth. The epidermal growth factor receptor (EGFR) family member ERBB4, which forms signaling complexes with other EGFR family members, can undergo ligand-induced proteolytic cleavage to release a soluble intracellular domain (ICD) that enters the nucleus to modify transcription. We found that ERBB4 activates sterol regulatory element binding protein-2 (SREBP-2) to enhance low-density lipoprotein (LDL) uptake and cholesterol biosynthesis.
View Article and Find Full Text PDFWe present the principles underlying the isotopomer spectral analysis (ISA) method for evaluating biosynthesis using stable isotopes. ISA addresses a classic conundrum encountered in the use of radioisotopes to estimate biosynthesis rates whereby the information available is insufficient to estimate biosynthesis. ISA overcomes this difficulty capitalizing on the additional information available from the mass isotopomer labeling profile of a polymer.
View Article and Find Full Text PDFWe investigated the compartmentation of the catabolism of dodecanedioate (DODA), azelate, and glutarate in perfused rat livers, using a combination of metabolomics and mass isotopomer analyses. Livers were perfused with recirculating or nonrecirculating buffer containing one fully (13)C-labeled dicarboxylate. Information on the peroxisomal versus mitochondrial catabolism was gathered from the labeling patterns of acetyl-CoA proxies, i.
View Article and Find Full Text PDFCancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)(+) cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored.
View Article and Find Full Text PDFSummary: Most current stable isotope-based methodologies are targeted and focus only on the well-described aspects of metabolic networks. Here, we present NTFD (non-targeted tracer fate detection), a software for the non-targeted analysis of all detectable compounds derived from a stable isotope-labeled tracer present in a GC/MS dataset. In contrast to traditional metabolic flux analysis approaches, NTFD does not depend on any a priori knowledge or library information.
View Article and Find Full Text PDFAcetyl coenzyme A (AcCoA) is the central biosynthetic precursor for fatty-acid synthesis and protein acetylation. In the conventional view of mammalian cell metabolism, AcCoA is primarily generated from glucose-derived pyruvate through the citrate shuttle and ATP citrate lyase in the cytosol. However, proliferating cells that exhibit aerobic glycolysis and those exposed to hypoxia convert glucose to lactate at near-stoichiometric levels, directing glucose carbon away from the tricarboxylic acid cycle and fatty-acid synthesis.
View Article and Find Full Text PDFWe developed a simple and accurate method for determining deuterium enrichment of glucose hydrogen atoms by electron impact gas chromatography mass spectrometry (GC/MS). First, we prepared 18 derivatives of glucose and screened over 200 glucose fragments to evaluate the accuracy and precision of mass isotopomer data for each fragment. We identified three glucose derivatives that gave six analytically useful ions: (1) glucose aldonitrile pentapropionate (m/z 173 derived from C4-C5 bond cleavage; m/z 259 from C3-C4 cleavage; m/z 284 from C4-C5 cleavage; and m/z 370 from C5-C6 cleavage); (2) glucose 1,2,5,6-di-isopropylidene propionate (m/z 301, no cleavage of glucose carbon atoms); and (3) glucose methyloxime pentapropionate (m/z 145 from C2-C3 cleavage).
View Article and Find Full Text PDFPalmitate (PA) is known to induce reactive oxygen species (ROS) formation and apoptosis in liver cells, whereas concurrent treatment of oleate (OA) with PA predominately induces steatosis without ROS in liver cells. We previously reported that PA treatment induces the decoupling of glycolysis and tricarboxylic acid cycle (TCA cycle) fluxes, but OA co-treatment restored most metabolic fluxes to their control levels. However, the mechanisms by which metabolites are linked to metabolic fluxes and subsequent lipoapoptotic or steatotic phenotypes remain unclear.
View Article and Find Full Text PDFCell reprogramming from a quiescent to proliferative state requires coordinate activation of multiple -omic networks. These networks activate histones, increase cellular bioenergetics and the synthesis of macromolecules required for cell proliferation. However, mechanisms that coordinate the regulation of these interconnected networks are not fully understood.
View Article and Find Full Text PDFBackground: Although dietary ketogenic essential amino acid (KAA) content modifies accumulation of hepatic lipids, the molecular interactions between KAAs and lipid metabolism are yet to be fully elucidated.
Methodology/principal Findings: We designed a diet with a high ratio (E/N) of essential amino acids (EAAs) to non-EAAs by partially replacing dietary protein with 5 major free KAAs (Leu, Ile, Val, Lys and Thr) without altering carbohydrate and fat content. This high-KAA diet was assessed for its preventive effects on diet-induced hepatic steatosis and whole-animal insulin resistance.
Systems level tools for the quantitative analysis of metabolic networks are required to engineer metabolism for biomedical and industrial applications. While current metabolomics techniques enable high-throughput quantification of metabolites, these methods provide minimal information on the rates and connectivity of metabolic pathways. Here we present a new method, nontargeted tracer fate detection (NTFD), that expands upon the concept of metabolomics to solve the above problems.
View Article and Find Full Text PDFTo identify metabolic pathways involved in hepatic lipoapoptosis, metabolic flux analysis using [U-(13)C(5)]glutamine as an isotopic tracer was applied to quantify phenotypic changes in H4IIEC3 hepatoma cells treated with either palmitate alone (PA-cells) or both palmitate and oleate in combination (PA/OA-cells). Our results indicate that palmitate inhibited glycolysis and lactate dehydrogenase fluxes while activating citric acid cycle (CAC) flux and glutamine uptake. This decoupling of glycolysis and CAC fluxes occurred during the period following palmitate exposure but preceding the onset of apoptosis.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
July 2009
We developed a LC-MS-MS assay of the (2)H labeling of free glutathione (GSH) and bound glutathione [GSSR; which includes all DTT-reducible forms, primarily glutathione disulfide (GSSG) and mixed disulfides with proteins] and ophthalmate (an index of GSH depletion) labeled from (2)H-enriched body water. In rats whose body water was 2.5% (2)H enriched for up to 31 days, GSH labeling follows a complex pattern because of different rates of labeling of its constitutive amino acids.
View Article and Find Full Text PDFWe conducted a study coupling metabolomics and mass isotopomer analysis of liver gluconeogenesis and citric acid cycle. Rat livers were perfused with lactate or pyruvate +/- aminooxyacetate or mercaptopicolinate in the presence of 40% enriched NaH(13)CO(3). Other livers were perfused with dimethyl [1,4-(13)C(2)]succinate +/- mercaptopicolinate.
View Article and Find Full Text PDFIn this second of two companion articles, we compare the mass isotopomer distribution of metabolites of liver gluconeogenesis and citric acid cycle labeled from NaH(13)CO(3) or dimethyl [1,4-(13)C(2)]succinate. The mass isotopomer distribution of intermediates reveals the reversibility of the isocitrate dehydrogenase + aconitase reactions, even in the absence of a source of alpha-ketoglutarate. In addition, in many cases, a number of labeling incompatibilities were found as follows: (i) glucose versus triose phosphates and phosphoenolpyruvate; (ii) differences in the labeling ratios C-4/C-3 of glucose versus (glyceraldehyde 3-phosphate)/(dihydroxyacetone phosphate); and (iii) labeling of citric acid cycle intermediates in tissue versus effluent perfusate.
View Article and Find Full Text PDFGlutathione (GSH), an intracellular tripeptide that combats oxidative stress, must be continually replaced due to loss through conjugation and destruction. Previous methods, estimating the synthesis of GSH in vivo, used constant infusions of labeled amino acid precursors. We developed a new method based on incorporation of (2)H from orally supplied (2)H(2)O into stable C-H bonds on the tripeptide.
View Article and Find Full Text PDFWe previously reported that glutamine was a major source of carbon for de novo fatty acid synthesis in a brown adipocyte cell line. The pathway for fatty acid synthesis from glutamine may follow either of two distinct pathways after it enters the citric acid cycle. The glutaminolysis pathway follows the citric acid cycle, whereas the reductive carboxylation pathway travels in reverse of the citric acid cycle from alpha-ketoglutarate to citrate.
View Article and Find Full Text PDFParacetamol, sulfathiazole and L-glutamic acid are presented as examples of pharmaceutical crystal polymorphic systems. The effect of N-acylated sulfathiazole derivatives (3-6) on sulfathiazole crystallisation is discussed, and possible modes of action presented. Methods for the control of the crystal polymorphism of L-glutamic acid which utilise the principles of conformation mimicry and co-operative binding are presented.
View Article and Find Full Text PDFMetabolic flux analysis based on stable-isotope labeling experiments and analysis of mass isotopomer distributions (MID) of cellular metabolites is a tool of great significance for metabolic engineering and study of human disease. This method relies on accurate and precise measurements of mass isotopomers by gas chromatography/mass spectrometry. To improve flux estimates, we assessed potential errors in determining MID of tert-butyldimethylsilyl-derivatized amino acids, which were attributed to (i) the choice of integration algorithm, (ii) concentration effects, and (iii) overlapping fragments.
View Article and Find Full Text PDFInsulin resistance is characterized by high insulin levels and decreased responsiveness of tissues to the clearance of glucose from the bloodstream. This study maintained the diabetes-prone C57BL/6J and obese-resistant A/J mice strains on a high-fat diet for twelve weeks to transcriptionally profile the liver for changes caused by high fat diet. In the eighth week of the experiment, the C57BL/6J mice began exhibiting signs of insulin resistance, while the A/J mice did not show any such indications during the course of the experiment.
View Article and Find Full Text PDFMetabolic fluxes estimated from stable-isotope studies provide a key to understanding cell physiology and regulation of metabolism. A limitation of the classical method for metabolic flux analysis (MFA) is the requirement for isotopic steady state. To extend the scope of flux determination from stationary to nonstationary systems, we present a novel modeling strategy that combines key ideas from isotopomer spectral analysis (ISA) and stationary MFA.
View Article and Find Full Text PDF