A geographic mosaic of coevolution has produced local reciprocal adaptation in tall goldenrod, Solidago altissima (L.), and the goldenrod ball-gall fly, Eurosta solidaginis (Fitch 1855). The fly is selected to induce gall diameters that minimize mortality from natural enemies, and the plant is selected to limit gall growth that reduces plant fitness.
View Article and Find Full Text PDFThe variability in the genetic variance-covariance (G-matrix) in plant resistance and its role in the evolution of invasive plants have been long overlooked. We conducted an additional analysis of the data of a reciprocal transplant experiment with tall goldenrod, , in multiple garden sites within its native range (USA) and introduced range (Japan). We explored the differences in G-matrix of resistance to two types of foliar herbivores: (a) a lace bug that is native to the USA and recently introduced to Japan, (b) and other herbivorous insects in response to plant origins and environments.
View Article and Find Full Text PDFGeographic variation in the traits of a species is shaped by variation in abiotic conditions, biotic interactions, and evolutionary history of its interactions with other species. We studied the geographic variation in the density of the lace bug, Corythucha marmorata, and the resistance of tall goldenrod Solidago altissima to the lace bug herbivory in their native range in the United States and invaded range in Japan. We conducted field surveys and reciprocal transplant experiments to examine what abiotic and biotic factors influence variation in lace bug density, and what ecological and evolutionary factors predict the resistance of the host plant between and within the native and invaded ranges.
View Article and Find Full Text PDFWe tested the hypothesis that forest and prairie populations of the gall-inducing fly, Eurosta solidaginis, have diverged in response to variation in selection by its host plant Solidago altissima, and its natural enemies. A reciprocal cross infection design experiment demonstrated that fly populations from the prairie and forest biomes had higher survival on local biome plants compared to foreign biome host plants. Flies from each biome also had an oviposition preference for their local plants.
View Article and Find Full Text PDFExtrinsic, host-associated environmental factors may influence postmating isolation between herbivorous insect populations and represent a fundamentally ecological cause of speciation. We investigated this issue in experiments on hybrids between the host races of Eurosta solidaginis, a fly that induces galls on the goldenrods Solidago altissima and S. gigantea.
View Article and Find Full Text PDFThe geographic mosaic theory of coevolution predicts that geographic variation in species interactions will lead to differing selective pressures on interacting species, producing geographic variation in the traits of interacting species (Thompson 2005). We supported this hypothesis in a study of the geographic variation in the interactions among Eurosta solidaginis and its natural enemies. Eurosta solidaginis is a fly (Diptera: Tephritidae) that induces galls on subspecies of tall goldenrod, Solidago altissima altissima and S.
View Article and Find Full Text PDFWe studied the inheritance of survival ability in host-associated populations of the tephritid fly, Eurosta solidaginis, to test predictions of sympatric speciation models. Eurosta solidaginis induces galls on two species of goldenrod, Solidago altissima and S. gigantea.
View Article and Find Full Text PDFWe report behavioral evidence that Eurosta solidaginis, a stem-galling tephritid fly, has formed host races on its two goldenrod hosts, Solidago altissima and S. gigantea. Previous work has shown that flies from each host plant differ electrophoretically at the level of host races.
View Article and Find Full Text PDFWe tested predictions of sex allocation theory with a series of field experiments on sex allocation in an herbivorous, haplodiploid, sawfly, Euura lasiolepis. Our experiments demonstrated the following points. 1) Adult females allocated progeny sex in response to plant growth.
View Article and Find Full Text PDF