Introduction: Prior sleep behavior has been shown to correlate with waking resting-state functional connectivity (FC) in the default mode network (DMN). However, the impact of sleep history on FC during sleep has not been investigated. The aim of this study was to establish whether there is an association between intersubject variability in habitual sleep behaviors and the strength of FC within the regions of the DMN during non-rapid eye movement (NREM) sleep.
View Article and Find Full Text PDFIntroduction: Despite the thalamus' dense connectivity with both cortical and subcortical structures, few studies have specifically investigated how thalamic connectivity changes with age and how such changes are associated with behavior. This study investigated the effect of age on thalamo-cortical and thalamo-hippocampal functional connectivity (FC) and the association between thalamic FC and visual-spatial memory and reaction time (RT) performance in older adults.
Methods: Resting-state functional magnetic resonance images were obtained from younger ( = 20) and older ( = 20) adults.
The thalamus is crucial for sleep regulation and the pathophysiology of idiopathic generalised epilepsy (IGE), and may serve as the underlying basis for the links between the two. We investigated this using EEG-fMRI and a specific emphasis on the role and functional connectivity (FC) of the thalamus. We defined three types of thalamic FC: thalamocortical, inter-hemispheric thalamic, and intra-hemispheric thalamic.
View Article and Find Full Text PDFNeurobiol Sleep Circadian Rhythms
June 2017
Self-imposed short sleep durations are increasingly commonplace in society, and have considerable health and performance implications for individuals. Reduced sleep duration over multiple nights has similar behavioural effects to those observed following acute total sleep deprivation, suggesting that lack of sleep affects brain function cumulatively. A link between habitual sleep patterns and functional connectivity has previously been observed, and the effect of sleep duration on the brain's intrinsic functional architecture may provide a link between sleep status and cognition.
View Article and Find Full Text PDFFront Aging Neurosci
November 2016
Advancing age is commonly associated with changes in both brain structure and function. Recently, the suggestion that alterations in brain connectivity may drive disruption in cognitive abilities with age has been investigated. However, the interaction between the effects of age and gender on the re-organization of resting-state networks is not fully understood.
View Article and Find Full Text PDFThe transition from wakefulness into sleep is accompanied by modified activity in the brain's thalamocortical network. Sleep-related decreases in thalamocortical functional connectivity (FC) have previously been reported, but the extent to which these changes differ between thalamocortical pathways, and patterns of intra-thalamic FC during sleep remain untested. To non-invasively investigate thalamocortical and intra-thalamic FC as a function of sleep stage we recorded simultaneous EEG-fMRI data in 13 healthy participants during their descent into light sleep.
View Article and Find Full Text PDFStudy Objectives: We examined whether interindividual differences in habitual sleep patterns, quantified as the cumulative habitual total sleep time (cTST) over a 2-w period, were reflected in waking measurements of intranetwork and internetwork functional connectivity (FC) between major nodes of three intrinsically connected networks (ICNs): default mode network (DMN), salience network (SN), and central executive network (CEN).
Methods: Resting state functional magnetic resonance imaging (fMRI) study using seed-based FC analysis combined with 14-d wrist actigraphy, sleep diaries, and subjective questionnaires (N = 33 healthy adults, mean age 34.3, standard deviation ± 11.
Information flow between the thalamus and cerebral cortex is a crucial component of adaptive brain function, but the details of thalamocortical interactions in human subjects remain unclear. The principal aim of this study was to evaluate the agreement between functional thalamic network patterns, derived using seed-based connectivity analysis and independent component analysis (ICA) applied separately to resting state functional MRI (fMRI) data from 21 healthy participants. For the seed-based analysis, functional thalamic parcellation was achieved by computing functional connectivity (FC) between thalamic voxels and a set of pre-defined cortical regions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2011
In recent years the study of resting state brain networks (RSNs) has become an important area of neuroimaging. The majority of studies have used functional magnetic resonance imaging (fMRI) to measure temporal correlation between blood-oxygenation-level-dependent (BOLD) signals from different brain areas. However, BOLD is an indirect measure related to hemodynamics, and the electrophysiological basis of connectivity between spatially separate network nodes cannot be comprehensively assessed using this technique.
View Article and Find Full Text PDFFunctional connectivity (FC) between brain regions is thought to be central to the way in which the brain processes information. Abnormal connectivity is thought to be implicated in a number of diseases. The ability to study FC is therefore a key goal for neuroimaging.
View Article and Find Full Text PDFObject: The objective of this work was to assess functional connectivity measurements at ultra-high field (7T), given BOLD contrast to noise ratio increases with magnetic field strength but physiological noise also increases.
Materials And Methods: Resting state BOLD data were acquired at 3 and 7T to assess connectivity in the sensorimotor network (SMN) and default mode network (DMN) at different spatial smoothing levels.
Results: At 3 and 7T positive correlation is observed between a right sensorimotor seed and left sensorimotor cortex.
This study shows that the spatial specificity of MEG beamformer estimates of electrical activity can be affected significantly by the way in which covariance estimates are calculated. We define spatial specificity as the ability to extract independent timecourse estimates of electrical brain activity from two separate brain locations in close proximity. Previous analytical and simulated results have shown that beamformer estimates are affected by narrowing the time frequency window in which covariance estimates are made.
View Article and Find Full Text PDF