Despite causing regular seasonal epidemics with substantial morbidity, mortality and socioeconomic burden, there is still a lack of research into influenza B viruses (IBVs). In this study, we provide for the first time a systematic investigation on the tropism, replication kinetics and pathogenesis of IBVs in the human respiratory tract.Physiologically relevant explant cultures of human bronchus and lung, human airway organoids, and cultures of differentiated primary human bronchial epithelial cells and type-I-like alveolar epithelial cells were used to study the cellular and tissue tropism, replication competence and induced innate immune response of 16 IBV strains isolated from 1940 to 2012 in comparison with human seasonal influenza A viruses (IAVs), H1N1 and H3N2.
View Article and Find Full Text PDFBackground: Since March, 2013, an avian-origin influenza A H7N9 virus has caused severe pneumonia in China. The aim of this study was to investigate the pathogenesis of this new virus in human beings.
Methods: We obtained ex-vivo cultures of the human bronchus, lung, nasopharynx, and tonsil and in-vitro cultures of primary human alveolar epithelial cells and peripheral blood monocyte-derived macrophages.
Since April 2012, there have been 17 laboratory-confirmed human cases of respiratory disease associated with newly recognized human betacoronavirus lineage C virus EMC (HCoV-EMC), and 7 of them were fatal. The transmissibility and pathogenesis of HCoV-EMC remain poorly understood, and elucidating its cellular tropism in human respiratory tissues will provide mechanistic insights into the key cellular targets for virus propagation and spread. We utilized ex vivo cultures of human bronchial and lung tissue specimens to investigate the tissue tropism and virus replication kinetics following experimental infection with HCoV-EMC compared with those following infection with human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus (SARS-CoV).
View Article and Find Full Text PDFThe novel pandemic influenza H1N1 (H1N1pdm) virus of swine origin causes mild disease but occasionally leads to acute respiratory distress syndrome and death. It is important to understand the pathogenesis of this new disease in humans. We compared the virus tropism and host-responses elicited by pandemic H1N1pdm and seasonal H1N1 influenza viruses in ex vivo cultures of human conjunctiva, nasopharynx, bronchus, and lung, as well as in vitro cultures of human nasopharyngeal, bronchial, and alveolar epithelial cells.
View Article and Find Full Text PDF