Publications by authors named "Joanne Forden"

Background: Brief electrical stimulation (ES) therapy to the nerve may improve outcome in lacerated, repaired nerves. However, most human nerve injuries leave the nerve in continuity with variable and often poor functional recovery from incomplete axon regeneration and reinnervation.

Objective: To evaluate the effect of brief ES in an experimental model for neuroma-in-continuity (NIC) injuries in rodents.

View Article and Find Full Text PDF

Objective: Supercharge end-to-side (SETS) transfer, also referred to as reverse end-to-side transfer, distal to severe nerve compression neuropathy or in-continuity nerve injury is gaining clinical popularity despite questions about its effectiveness. Here, the authors examined SETS distal to experimental neuroma in-continuity (NIC) injuries for efficacy in enhancing neuronal regeneration and functional outcome, and, for the first time, they definitively evaluated the degree of contribution of the native and donor motor neuron pools.

Methods: This study was conducted in 2 phases.

View Article and Find Full Text PDF

Background: To optimize survival evaluation of Schwann cells (SCs) in vivo, we tested fluorescent labeling of the nucleus as an improved method of tracking and counting the transplanted SCs at sciatic nerve injury sites in rodents. We also investigated if co-administering cells with the glial growth factor Neuregulin-1 β (NRG1β) improves in vivo survival.

New Method: We transduced SCs using a Lentiviral vector with a nuclear localization signal (NLS) fused with mCherry and transplanted them in the sciatic nerve of rat post-crush injury (bilateral) either in the presence or absence of NRG1β in the injectate media.

View Article and Find Full Text PDF

Previous work has shown that infusion of skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) can remyelinate injured and regenerating axons, and improve indices of axonal regeneration and electrophysiological parameters in rodents. We hypothesized that SKP-SC therapy would improve behavioral outcomes following nerve injury repair and tested this in a pre-clinical trial in 90 rats. A model of sciatic nerve injury and acellular graft repair was used to compare injected SKP-SCs to nerve-derived Schwann cells or media, and each was compared to the gold standard nerve isograft repair.

View Article and Find Full Text PDF

Peripheral nerve transection and neuroma-in-continuity injuries are associated with permanent functional deficits, often despite successful end-organ reinnervation. Axonal misdirection with non-specific reinnervation, frustrated regeneration and axonal attrition are believed to be among the anatomical substrates that underlie the poor functional recovery associated with these devastating injuries. Yet, functional deficits associated with axonal misdirection in experimental neuroma-in-continuity injuries have not yet been studied.

View Article and Find Full Text PDF

While damaged peripheral nerves demonstrate some potential to regenerate, complete functional recovery remains infrequent, owing to a functional loss of supportive Schwann cells distal to the injury. An emerging solution to improve upon this intrinsic regenerative capacity is to supplement injured nerves with stem cells derived from various tissues. While many of these strategies have proven successful in animal models, few studies have examined the behavior of transplanted stem cells in vivo, including whether they survive and differentiate.

View Article and Find Full Text PDF

Background: Autologous nerve grafts remain the only proven means of bridging lengthy gaps in peripheral nerve. However, there is very little literature on a reliable long (> 5 cm) nerve autograft animal model.

Objective: To establish a reproducible long nerve gap and autograft animal model that is clinically relevant but not cost prohibitive.

View Article and Find Full Text PDF

Object: Surgical repair of peripheral nerves following chronic nerve injury is associated with poor axonal regeneration and outcome. An underlying possibility is that chronic injuries may increase motoneuron cell death. The hypothesis that substantial motoneuron death follows chronic and sequential nerve injuries was tested in adult rats in this study.

View Article and Find Full Text PDF