Publications by authors named "Joanne E Parker"

We previously demonstrated that hexokinase II (HK2) dissociation from mitochondria during cardiac ischemia correlates with cytochrome c (cyt-c) loss, oxidative stress and subsequent reperfusion injury. However, whether HK2 release is the primary signal mediating this ischemia-induced mitochondrial dysfunction was not established. To investigate this, we studied the effects of dissociating HK2 from isolated heart mitochondria.

View Article and Find Full Text PDF

Rationale: Mitochondrial-bound hexokinase II (HK2) was recently proposed to play a crucial role in the normal functioning of the beating heart and to be necessary to maintain mitochondrial membrane potential. However, our own studies confirmed that mitochondria from ischemic rat hearts were HK2-depleted, yet showed no indication of depolarization and responded normally to ADP.

Objective: To establish whether the human TAT-HK2 peptide used to dissociate mitochondrial-bound HKII in the Langendorff-perfused heart may exert its effects indirectly by impairing coronary function.

View Article and Find Full Text PDF

Background: The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia-reperfusion injury remain unclear. Here we investigate whether and how mitochondria-bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP.

Methods And Results: Control and IP Langendorff-perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size.

View Article and Find Full Text PDF

Oxidized cytochrome c is a powerful superoxide scavenger within the mitochondrial IMS (intermembrane space), but the importance of this role in situ has not been well explored. In the present study, we investigated this with particular emphasis on whether loss of cytochrome c from mitochondria during heart ischaemia may mediate the increased production of ROS (reactive oxygen species) during subsequent reperfusion that induces mPTP (mitochondrial permeability transition pore) opening. Mitochondrial cytochrome c depletion was induced in vitro with digitonin or by 30 min ischaemia of the perfused rat heart.

View Article and Find Full Text PDF

Inhibition of mitochondrial permeability transition pore (MPTP) opening at reperfusion is critical for cardioprotection by ischemic preconditioning (IP). Some studies have implicated mitochondrial protein phosphorylation in this effect. Here we confirm that mitochondria rapidly isolated from preischemic control and IP hearts show no significant difference in calcium-mediated MPTP opening, whereas IP inhibits MPTP opening in mitochondria isolated from IP hearts following 30 minutes of global normothermic ischemia or 3 minutes of reperfusion.

View Article and Find Full Text PDF

A mitochondrial sulphonylurea-sensitive, ATP-sensitive K+ channel (mitoKATP) that is selectively inhibited by 5-hydroxydecanoate (5-HD) and activated by diazoxide has been implicated in ischaemic preconditioning. Here we re-evaluate the evidence for the existence of this mitoKATP by measuring changes in light scattering (A520) in parallel with direct determination of mitochondrial matrix volumes using 3H2O and [14C]sucrose. Incubation of rat liver and heart mitochondria in KCl medium containing Mg2+ and inorganic phosphate caused a decrease in light scattering over 5 min, which was accompanied by a small (15-30 %) increase in matrix volume.

View Article and Find Full Text PDF