The optimal rate of rewarming after therapeutic hypothermia is unclear. Slow rewarming may reduce cardiovascular instability and rebound seizures, but there is little controlled evidence to support this. The present study aimed to determine whether slow rewarming can improve neuroprotection after 72 h of hypothermia.
View Article and Find Full Text PDFClin Perinatol
September 2024
Therapeutic hypothermia is now well established to improve neurodevelopmental outcomes after hypoxic-ischemic encephalopathy (HIE). Although the overall principles of treatment are now well established, many smaller questions are unclear. The potential impact of reversal of hypothermia therapy and the effect of high temperatures on recovery of the neurovascular unit after therapeutic hypothermia for HIE has received relatively little attention.
View Article and Find Full Text PDFTherapeutic hypothermia is now standard of care for neonates with hypoxic-ischemic encephalopathy (HIE) in high income countries (HIC). Conversely, compelling trial evidence suggests that hypothermia is ineffective, and may be deleterious, in low- and middle-income countries (LMIC), likely reflecting the lower proportion of infants who had sentinel events at birth, suggesting that injury had advanced to a stage when hypothermia is no longer effective. Although hypothermia significantly reduced the risk of death and disability in HICs, many infants survived with disability and in principle may benefit from targeted add-on neuroprotective or neurorestorative therapies.
View Article and Find Full Text PDFBrain maturity and many clinical treatments such as therapeutic hypothermia (TH) can significantly influence the morphology of neonatal EEG seizures after hypoxia-ischemia (HI), and so there is a need for generalized automatic seizure identification. This study validates efficacy of advanced deep-learning pattern classifiers based on a convolutional neural network (CNN) for seizure detection after HI in fetal sheep and determines the effects of maturation and brain cooling on their accuracy. The cohorts included HI-normothermia term ( = 7), HI-hypothermia term ( = 14), sham-normothermia term ( = 5), and HI-normothermia preterm ( = 14) groups, with a total of >17,300 h of recordings.
View Article and Find Full Text PDFNeonatal seizures after an hypoxic-ischemic (HI) event in preterm newborns can contribute to neural injury and cause impaired brain development. Preterm neonatal seizures are often not detected or their occurrence underestimated. Therefore, there is a need to improve knowledge about preterm seizures that can help establish diagnostic tools for accurate identification of seizures and for determining morphological differences.
View Article and Find Full Text PDFBackground And Purpose: There is growing evidence that infants with mild hypoxic-ischemic (HI) encephalopathy have increased risk of brain injury and adverse neurodevelopmental outcomes. Currently, there is no approved treatment for these infants. It was previously shown that blocking connexin 43 hemichannels is neuroprotective in models of moderate to severe HI injury.
View Article and Find Full Text PDFPerinatal infection or inflammation are associated with adverse neurodevelopmental effects and cardiovascular impairments in preterm infants. Most preclinical studies have examined the effects of gram-negative bacterial inflammation on the developing brain, although gram-positive bacterial infections are a major contributor to adverse outcomes. Killed Su-strain group 3 A streptococcus pyogenes (Picibanil, OK-432) is being used for pleurodesis in fetal hydrothorax/chylothorax.
View Article and Find Full Text PDFBackground: Current carrier screening methods do not identify a proportion of carriers that may have children affected by spinal muscular atrophy (SMA). Additional genetic data is essential to inform accurate risk assessment and genetic counselling of SMA carriers. This study aims to quantify the various genotypes among parents of children with SMA.
View Article and Find Full Text PDFHypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and severe neurodevelopmental disability in survivors, including cerebral palsy, although there are no reliable biomarkers to detect at risk fetuses that may have suffered a transient period of severe HI. We investigated time and frequency domain measures of fetal heart rate variability (FHRV) for 3 weeks after HI in preterm fetal sheep at 0.7 gestation (equivalent to preterm humans) until 0.
View Article and Find Full Text PDFMaternal magnesium sulphate (MgSO ) treatment is widely recommended before preterm birth for neuroprotection. However, this is controversial because there is limited evidence that MgSO provides long-term neuroprotection. Preterm fetal sheep (104 days gestation; term is 147 days) were assigned randomly to receive sham occlusion with saline infusion (n = 6) or i.
View Article and Find Full Text PDFReduced grey matter volume in preterm infants is associated with later disability, but its time course and relationship with white matter injury are not well understood. We recently showed that moderate-severe hypoxia-ischaemia (HI) in preterm fetal sheep led to severe cystic injury 2-3 weeks later. In the same cohort we now show profound hippocampal neuronal loss from 3 days after HI.
View Article and Find Full Text PDFTherapeutic hypothermia significantly improves outcomes after neonatal hypoxic-ischemic (HI) encephalopathy but is only partially protective. There is evidence that cortical inhibitory interneuron circuits are particularly vulnerable to HI and that loss of interneurons may be an important contributor to long-term neurological dysfunction in these infants. In the present study, we examined the hypothesis that the duration of hypothermia has differential effects on interneuron survival after HI.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
June 2023
Exposure to hypoxic-ischaemia (HI) is consistently followed by a delayed fall in cerebral perfusion. In preterm fetal sheep this is associated with impaired cerebral oxygenation, consistent with mismatch between perfusion and metabolism. In the present study we tested the hypothesis that alpha-adrenergic inhibition after HI would improve cerebral perfusion, and so attenuate mismatch and reduce neural injury.
View Article and Find Full Text PDFHypoxic ischemic encephalopathy (HIE) is a major global cause of neonatal death and lifelong disability. Large animal translational studies of hypoxic ischemic brain injury, such as those conducted in fetal sheep, have and continue to play a key role in furthering our understanding of the cellular and molecular mechanisms of injury and developing new treatment strategies for clinical translation. At present, the quantification of neurons in histological images consists of slow, manually intensive morphological assessment, requiring many repeats by an expert, which can prove to be time-consuming and prone to human error.
View Article and Find Full Text PDFCystic white matter injury is highly associated with severe neurodevelopmental disability and cerebral palsy in preterm infants, yet its pathogenesis remains poorly understood and there is no established treatment. In the present study, we tested the hypothesis that slowly evolving cystic white matter injury after hypoxia-ischaemia is mediated by programmed necrosis initiated by tumour necrosis factor. Tumour necrosis factor blockade was begun 3 days after hypoxia-ischaemia to target the tertiary phase of injury, when most secondary cell death is thought to be complete.
View Article and Find Full Text PDFHypoxic-ischemic encephalopathy is brain injury resulting from the loss of oxygen and blood supply around the time of birth. It is associated with a high risk of death or disability. The only approved treatment is therapeutic hypothermia.
View Article and Find Full Text PDFBackground: Hypoxic-ischemic encephalopathy (HIE) around the time of birth results from loss of oxygen (hypoxia) and blood supply (ischemia). Exogenous infusion of multi-potential cells, including human amnion epithelial cells (hAECs), can reduce hypoxic-ischemic (HI) brain injury. However, there are few data on treatment of severe HI in large animal paradigms at term.
View Article and Find Full Text PDFPerinatal hypoxia-ischemia (HI) is still a significant contributor to mortality and adverse neurodevelopmental outcomes in term and preterm infants. HI brain injury evolves over hours to days, and involves complex interactions between the endogenous protective and pathological processes. Understanding the timing of evolution of injury is vital to guide treatment.
View Article and Find Full Text PDF