Publications by authors named "Joanne Casey"

The management of diabetic foot osteomyelitis (DFO) is extremely challenging with high amputation rates reported alongside a five-year mortality risk of more than fifty percent. We describe our experience in using adjuvant antibiotic-loaded bio-composite material (Cerament) in the surgical management of DFO and infected Charcot foot reconstruction. We undertook a retrospective evaluation of 53 consecutive patients (54 feet) who underwent Gentamicin or Vancomycin-loaded Cerament application during surgery.

View Article and Find Full Text PDF

A highly effective 2-step system for site-specific antibody modification and conjugation of the monoclonal antibody Herceptin (commercially available under Trastuzumab) in a cysteine-independent manner was used to generate labelled antibodies for in vivo imaging. The first step contains redox-activated chemical tagging (ReACT) of thioethers via engineered methionine residues to introduce specific alkyne moieties, thereby offering a novel easy way to fundamentally change the process of antibody bioconjugation. The second step involves modification of the introduced alkyne via azide-alkyne cycloaddition 'click' conjugation.

View Article and Find Full Text PDF

The Duffy binding protein region II (DBPII) is a vital ligand for the parasite's invasion of reticulocytes, thereby making this molecule an attractive vaccine candidate against vivax malaria. However, strain-specific immunity due to DBPII allelic variation in Bc epitopes may complicate vaccine efficacy, suggesting that an effective DBPII vaccine needs to target conserved epitopes that are potential targets of strain-transcending neutralizing immunity. The minimal epitopes reactive with functionally inhibitory anti-DBPII monoclonal antibody (MAb) 3C9 and noninhibitory anti-DBPII MAb 3D10 were mapped using phage display expression libraries, since previous attempts to deduce the 3C9 epitope by cocrystallographic methods failed.

View Article and Find Full Text PDF

CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells.

View Article and Find Full Text PDF
Article Synopsis
  • The cytokine TWEAK and its receptor Fn14 are linked to tumor growth and are elevated in cancer, leading to complications like cachexia (muscle and weight loss).
  • Research showed that targeting Fn14 with antibodies can significantly increase lifespan in cancer patients by minimizing muscle and fat loss, even though it only moderately affects tumor size.
  • Fn14's role in inducing cachexia is primarily through tumor signaling, as tumors in mice lacking Fn14 had similar cachexia symptoms to those with functional Fn14, suggesting Fn14 antibodies could be a valuable treatment for cachexia in cancer.
View Article and Find Full Text PDF

Plasmodium vivax invasion of human erythrocytes requires interaction of the P. vivax Duffy binding protein (PvDBP) with its host receptor, the Duffy antigen (Fy) on the erythrocyte surface. Consequently, PvDBP is a leading vaccine candidate.

View Article and Find Full Text PDF

Apical membrane antigen 1 (AMA1) of the malaria parasite Plasmodium falciparum has been implicated in the invasion of host erythrocytes and is an important vaccine candidate. We have previously described a 20-residue peptide, R1, that binds to AMA1 and subsequently blocks parasite invasion. Because this peptide appears to target a site critical for AMA1 function, it represents an important lead compound for anti-malarial drug development.

View Article and Find Full Text PDF

Large repertoires of peptides displayed on bacteriophage have been extensively used to select for ligand-binding molecules. This is a relatively straightforward process involving several cycles of selection against target molecules, and the resulting ligands can be tailored to various applications. In this chapter we describe detailed methods to select peptide ligands for affinity chromatography, with particular focus on selection of peptides that mimic antigen epitopes.

View Article and Find Full Text PDF

Fusion proteins based on the crystalline bacterial cell surface layer (S-layer) proteins SbpA from Bacillus sphaericus CCM 2177 and SbsB from Geobacillus stearothermophilus PV72/p2 and a peptide mimotope F1 that mimics an immunodominant epitope of Epstein-Barr virus (EBV) were designed and overexpressed in Escherichia coli. Constructs were designed such that the peptide mimotope was presented either at the C-terminus (SbpA/F1) or at the N-terminus (SbsB/F1) of the respective S-layer proteins. The resulting S-layer fusion proteins, SbpA/F1 and SbsB/F1, fully retained the intrinsic self-assembly capability of the S-layer moiety into monomolecular lattices.

View Article and Find Full Text PDF

Apical membrane antigen 1 (AMA1) of the malaria parasite Plasmodium falciparum is an integral membrane protein that plays a key role in merozoite invasion of host erythrocytes. A monoclonal antibody, 4G2dc1, recognizes correctly folded AMA1 and blocks merozoite invasion. Phage display was used to identify peptides that bind to 4G2dc1 and mimic an important epitope of AMA1.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is a ubiquitous, worldwide infectious agent that causes infectious mononucleosis, affecting >90% of the world's population. Currently, enzyme-linked immunosorbent assay, mostly with purified preparations of EBV cell extracts to capture immunoglobulin M (IgM) antibodies in patients' serum, is used for primary diagnosis. Our objective was to determine whether a small set of peptides could contain sufficient immunogenic information to replace solid-phase antigens in EBV diagnostics.

View Article and Find Full Text PDF

Apical membrane antigen 1 (AMA1) is expressed in schizont-stage malaria parasites and sporozoites and is thought to be involved in the invasion of host red blood cells. AMA1 is an important vaccine candidate, as immunization with this antigen induces a protective immune response in rodent and monkey models of human malaria. Additionally, anti-AMA1 polyclonal and monoclonal antibodies inhibit parasite invasion in vitro.

View Article and Find Full Text PDF

Members of the Legionella genus are ubiquitous aquatic bacteria and the etiologic agents of Legionnaires' disease, a potentially fatal form of pneumonia. Using the chrome azurol S (CAS) assay, we previously determined that Legionella pneumophila secretes a siderophore (legiobactin) when it is grown in a low-iron, chemically defined medium (CDM). In the present study, we examined 29 other species of Legionella for their ability to produce CAS-reactive material when grown in deferrated CDM.

View Article and Find Full Text PDF

The new antigen receptor (IgNAR) is an antibody unique to sharks and consists of a disulphide-bonded dimer of two protein chains, each containing a single variable and five constant domains. The individual variable (V(NAR)) domains bind antigen independently, and are candidates for the smallest antibody-based immune recognition units. We have previously produced a library of V(NAR) domains with extensive variability in the CDR1 and CDR3 loops displayed on the surface of bacteriophage.

View Article and Find Full Text PDF

Apical membrane antigen 1 (AMA1) is expressed on the surfaces of Plasmodium falciparum merozoites and is thought to play an important role in the invasion of erythrocytes by malaria parasites. To select for peptides that mimic conformational B-cell epitopes on AMA1, we screened a phage display library of >10(8) individual peptides for peptides bound by a monoclonal anti-AMA1 antibody, 4G2dc1, known to inhibit P. falciparum invasion of erythrocytes.

View Article and Find Full Text PDF

The 4th Annual Recombinant Antibodies Conference was immediately following the 5th Annual 'Molecular Display: The Chemistry Set for Proteins and Small Molecules' conference, both held in Cambridge, MA and organised by Cambridge Healthtech Institute. The former conference focused on development of new approaches for recombinant antibody development, with particular emphasis on improved methods for selection and optimisation allowing rapid validation and development of human antibodies for the clinic. There were many impressive presentations describing emerging technologies such as new antibody-like scaffolds, covalent P2 antibody display, de-immunisation of antibodies and measuring affinities of as many as 400 clones simultaneously using proteomic microarray platforms.

View Article and Find Full Text PDF

This meeting covered recent advances in the molecular display of peptides, proteins and nucleotides, including selection and mutational technologies. The scientific organisers assembled an impressive array of 'molecular display' heavyweights. It promised to be a stimulating meeting and the events of the following 2 days did not disappoint.

View Article and Find Full Text PDF