Publications by authors named "Joanna Warwick-Dugdale"

Dominant microorganisms of the Sargasso Sea are key drivers of the global carbon cycle. However, associated viruses that shape microbial community structure and function are not well characterised. Here, we combined short and long read sequencing to survey Sargasso Sea phage communities in virus- and cellular fractions at viral maximum (80 m) and mesopelagic (200 m) depths.

View Article and Find Full Text PDF

Microbes play fundamental roles in shaping natural ecosystem properties and functions, but do so under constraints imposed by their viral predators. However, studying viruses in nature can be challenging due to low biomass and the lack of universal gene markers. Though metagenomic short-read sequencing has greatly improved our virus ecology toolkit-and revealed many critical ecosystem roles for viruses-microdiverse populations and fine-scale genomic traits are missed.

View Article and Find Full Text PDF

Marine viruses impact global biogeochemical cycles via their influence on host community structure and function, yet our understanding of viral ecology is constrained by limitations in host culturing and a lack of reference genomes and 'universal' gene markers to facilitate community surveys. Short-read viral metagenomic studies have provided clues to viral function and first estimates of global viral gene abundance and distribution, but their assemblies are confounded by populations with high levels of strain evenness and nucleotide diversity (microdiversity), limiting assembly of some of the most abundant viruses on Earth. Such features also challenge assembly across genomic islands containing niche-defining genes that drive ecological speciation.

View Article and Find Full Text PDF

Microbial communities living in the oceans are major drivers of global biogeochemical cycles. With nutrients limited across vast swathes of the ocean, marine microbes eke out a living under constant assault from predatory viruses. Viral concentrations exceed those of their bacterial prey by an order of magnitude in surface water, making these obligate parasites the most abundant biological entities in the ocean.

View Article and Find Full Text PDF