Publications by authors named "Joanna Tripp"

Hydroxybenzoic acids, like gallic acid and protocatechuic acid, are highly abundant natural compounds. In biotechnology, they serve as critical precursors for various molecules in heterologous production pathways, but a major bottleneck is these acids' non-oxidative decarboxylation to hydroxybenzenes. Optimizing this step by pathway and enzyme engineering is tedious, partly because of the complicating cofactor dependencies of the commonly used prFMN-dependent decarboxylases.

View Article and Find Full Text PDF

Compartmentalization in membrane-surrounded organelles has the potential to overcome obstacles associated with the engineering of metabolic pathways, such as unwanted side reactions, accumulation of toxic intermediates, drain of intermediates out of the cell, and long diffusion distances. Strategies utilizing natural organelles suffer from the presence of endogenous pathways. In our approach, we make use of endoplasmic reticulum-derived vesicles loaded with enzymes of a metabolic pathway ("metabolic vesicles").

View Article and Find Full Text PDF

A wide range of commercially relevant aromatic chemicals can be synthesized via the shikimic acid pathway. Thus, this pathway has been the target of diverse metabolic engineering strategies. In the present work, an optimized yeast strain for production of the shikimic acid pathway intermediate 3-dehydroshikimate (3-DHS) was generated, which is a precursor for the production of the valuable compounds cis, cis-muconic acid (CCM) and gallic acid (GA).

View Article and Find Full Text PDF

Human GLUT5 is a fructose-specific transporter in the glucose transporter family (GLUT, SLC2 gene family). Its substrate-specificity and tissue-specific expression make it a promising target for treatment of diabetes, metabolic syndrome and cancer, but few GLUT5 inhibitors are known. To identify and characterize potential GLUT5 ligands, we developed a whole-cell system based on a yeast strain deficient in fructose uptake, in which GLUT5 transport activity is associated with cell growth in fructose-based media or assayed by fructose uptake in whole cells.

View Article and Find Full Text PDF

Saccharomyces cerevisiae has been extensively engineered for optimising its performance as a microbial cell factory to produce valuable aromatic compounds and their derivatives as bulk and fine chemicals. The production of heterologous aromatic molecules in yeast is achieved via engineering of the aromatic amino acid biosynthetic pathway. This pathway is connected to two pathways of the central carbon metabolism, and is highly regulated at the gene and protein level.

View Article and Find Full Text PDF

Biotechnological production of ,-muconic acid from renewable feedstocks is an environmentally sustainable alternative to conventional, petroleum-based methods. Even though a heterologous production pathway for ,-muconic acid has already been established in the host organism , the generation of industrially relevant amounts of ,-muconic acid is hampered by the low activity of the bacterial protocatechuic acid (PCA) decarboxylase AroY isomeric subunit C (AroY-C), leading to secretion of large amounts of the intermediate PCA into the medium. In the present study, we show that the activity of AroY-C in strongly depends on the strain background.

View Article and Find Full Text PDF

Secretion of proteins is a central strategy of bacteria to influence and respond to their environment. Until now, there has been very few discoveries regarding the cyanobacterial secrotome or the secretion machineries involved. For a mutant of the outer membrane channel TolC-homologue HgdD of Anabaena sp.

View Article and Find Full Text PDF

Preprotein import into chloroplasts depends on macromolecular machineries in the outer and inner chloroplast envelope membrane (TOC and TIC). It was suggested that both machineries are interconnected by components of the intermembrane space (IMS). That is, amongst others, Tic22, of which two closely related isoforms exist in Arabidopsis thaliana, namely atTic22-III and atTic22-IV.

View Article and Find Full Text PDF

The import of cytosolically synthesized precursor proteins into chloroplasts by the translocon at the outer envelope membrane of chloroplasts (TOC) is crucial for organelle function. The recognition of precursor proteins at the chloroplast surface precedes translocation and involves the membrane-inserted receptor subunits Toc34 and Toc159. A third receptor, Toc64, was discussed to recognize cytosolic complexes guiding precursor proteins to the membrane surface, but this function remains debated.

View Article and Find Full Text PDF

Mitochondria and chloroplasts are of endosymbiotic origin. Their integration into cells entailed the development of protein translocons, partially by recycling bacterial proteins. We demonstrate the evolutionary conservation of the translocon component Tic22 between cyanobacteria and chloroplasts.

View Article and Find Full Text PDF

Tic20 is a central, membrane-embedded component of the precursor protein translocon of the inner envelope of chloroplasts (TIC). In Arabidopsis thaliana, four different isoforms of Tic20 exist. They are annotated as atTic20-I, -II, -IV and -V and form two distinct phylogenetic subfamilies in embryophyta.

View Article and Find Full Text PDF

The analysis of protein-protein interactions is essential for the understanding of the molecular events in enzymatic pathways, signaling cascades, or transport processes in the chloroplast. A large variety of methods are available, which range from qualitative assays allowing for screening for new interaction partners, and semiquantitative assays allowing for a rough description of the interaction between two partners, to quantitative assays that permit detailed determination of kinetic and thermodynamic parameters. We summarize the available technologies, describe their range of applications and pitfalls, and give some examples from chloroplast research.

View Article and Find Full Text PDF

The heat stress response is universal to all organisms. Upon elevated temperatures, heat stress transcription factors (Hsfs) are activated to up-regulate the expression of molecular chaperones to protect cells against heat damages. In higher plants, the phenomenon is unusually complex both at the level of Hsfs and heat stress proteins (Hsps).

View Article and Find Full Text PDF

AtTic40 is part of the chloroplastic protein import apparatus that is anchored in the inner envelope membrane by a single N-terminal transmembrane domain, and has a topology in which the bulk of the C-terminal domain is oriented toward the stroma. The targeting of AtTic40 to the inner envelope membrane involves two steps. Using an in vitro import assay, we showed that the sorting of AtTic40 requires a bipartite transit peptide, which was first cleaved by the stromal processing peptidase (SPP), thus generating a soluble AtTic40 stromal intermediate (iAtTic40).

View Article and Find Full Text PDF

The conformational dynamism and aggregate state of small heat shock proteins (sHSPs) may be crucial for their functions in thermoprotection of plant cells from the detrimental effects of heat stress. Ectopic expression of single chain fragment variable (scFv) antibodies against cytosolic sHSPs was used as new tool to generate sHSP loss-of-function mutants by antibody-mediated prevention of the sHSP assembly in vivo. Anti-sHSP scFv antibodies transiently expressed in heat-stressed tobacco protoplasts were not only able to recognize the endogenous sHSPs but also prevented their assembly into heat stress granula (HSGs).

View Article and Find Full Text PDF

Compared to the overall multiplicity of more than 20 plant Hsfs, detailed analyses are mainly restricted to tomato and Arabidopsis and to three important representatives of the family (Hsfs A1, A2 and B1). The three Hsfs represent examples of striking functional diversification specialized for the three phases of the heat stress (hs) response (triggering, maintenance and recovery). This is best illustrated for the tomato Hsf system: (i) HsfA1a is the master regulator responsible for hs-induced gene expression including synthesis of HsfA2 and HsfB1.

View Article and Find Full Text PDF

HsfA2 is a heat stress (hs)-induced Hsf in peruvian tomato (Lycopersicon peruvianum) and the cultivated form Lycopersicon esculentum. Due to the high activator potential and the continued accumulation during repeated cycles of heat stress and recovery, HsfA2 becomes a dominant Hsf in thermotolerant cells. The formation of heterooligomeric complexes with HsfA1 leads to nuclear retention and enhanced transcriptional activity of HsfA2.

View Article and Find Full Text PDF

We describe a new class of plant small heat stress proteins (sHsps) with dominant nuclear localization (Hsp17-CIII). The corresponding proteins in tomato, Arabidopsis, and rice are encoded by unique genes containing a short intron in the beta4-encoding region of the alpha-crystallin domain (ACD). The strong nuclear localization results from a cluster of basic amino acid residues in the loop between beta5 and beta6 of the ACD.

View Article and Find Full Text PDF

We generated transgenic tomato plants with altered expression of heat stress transcription factor HsfA1. Plants with 10-fold overexpression of HsfA1 (OE plants) were characterized by a single HsfA1 transgene cassette, whereas plants harboring a tandem inverted repeat of the cassette showed cosuppression (CS plants) by posttranscriptional silencing of the HsfA1 gene connected with formation of small interfering RNAs. Under normal growth conditions, major developmental parameters were similar for wild-type (WT), OE, and CS plants.

View Article and Find Full Text PDF