Publications by authors named "Joanna Szczepaniak"

The outer membrane (OM) of Gram-negative bacteria is not energised and so processes requiring a driving force must connect to energy-transduction systems in the inner membrane (IM). Tol (Tol-Pal) and Ton are related, proton motive force- (PMF-) coupled assemblies that stabilise the OM and import essential nutrients, respectively. Both rely on proton-harvesting IM motor (stator) complexes, which are homologues of the flagellar stator unit Mot, to transduce force to the OM through elongated IM force transducer proteins, TolA and TonB, respectively.

View Article and Find Full Text PDF

The spatial localisation of proteins is critical for most cellular function. In bacteria, this is typically achieved through capture by established landmark proteins. However, this requires that the protein is diffusive on the appropriate timescale.

View Article and Find Full Text PDF

In the 1960s several groups reported the isolation and preliminary genetic mapping of Escherichia coli strains tolerant towards the action of colicins. These pioneering studies kick-started two new fields in bacteriology; one centred on how bacteriocins like colicins exploit the Tol (or more commonly Tol-Pal) system to kill bacteria, the other on the physiological role of this cell envelope-spanning assembly. The following half century has seen significant advances in the first of these fields whereas the second has remained elusive, until recently.

View Article and Find Full Text PDF

Coordination of outer membrane constriction with septation is critical to faithful division in Gram-negative bacteria and vital to the barrier function of the membrane. This coordination requires the recruitment of the peptidoglycan-binding outer-membrane lipoprotein Pal at division sites by the Tol system. Here, we show that Pal accumulation at Escherichia coli division sites is a consequence of three key functions of the Tol system.

View Article and Find Full Text PDF

Styrylquinolines are heterocyclic compounds that are known for their antifungal and antimicrobial activity. Metal complexation through hydroxyl groups has been claimed to be a plausible mechanism of action for these types of compounds. A series of novel structures with protected hydroxyl groups have been designed and synthesized to verify the literature data.

View Article and Find Full Text PDF

Styrylquinolines are a novel group of quinoline drugs that are known to have p53-independent antiproliferative activity and antiviral properties. This study evaluated the antifungal activity of these drugs more deeply, particularly their activity modulation towards Cdr1p, the main multidrug transporter of Candida albicans. Styrylquinolines were found to have antifungal activity and to work synergistically with fluconazole.

View Article and Find Full Text PDF

We present a fluorometric method for determining ABC transporter activity in the pathogenic fungus C. albicans during different growth phases and in response to glucose. The carbocyanine dye diS-C3(3) was previously used to monitor plasma membrane potentials and test the influence of surface-active compounds in membrane polarization.

View Article and Find Full Text PDF

Introduction: Sprained ankle is a very common injury in children. Proper treatment of ligament injuries enables full recovery. X-ray and US examinations are commonly available diagnostic methods.

View Article and Find Full Text PDF

Candida albicans is a major cause of opportunistic and life-threatening, systemic fungal infections. Hence new antifungal agents, as well as new methods to treat fungal infections, are still needed. The application of inhibitors of drug-efflux pumps may increase the susceptibility of C.

View Article and Find Full Text PDF