Prostate-specific membrane antigen (PSMA) is a target for diagnostic positron emission tomography (PET)-tracers and radiopharmaceutical therapy (RPT), for example, [Lu]Lu-PSMA-617, in prostate cancer. This autoradiography study investigates [Lu]Lu-PSMA-617 intratumoral distribution over time, compared with PSMA expression, proliferation (Ki67), and [Ga]Ga-PSMA-11, [F]F-PSMA-1007, [F]-fluorodeoxyglucose, and [F]-fluorocholine distribution. Mice with LNCaP, 22Rv1, or PC-3 PIP xenografts got [Lu]Lu-PSMA-617 i.
View Article and Find Full Text PDFBackground: Accurate tumor volume estimation is important for evaluating the response to radionuclide therapy and external beam radiotherapy as well as to other pharmaceuticals. A common method for monitoring the growth of subcutaneous tumors in pre-clinical models and assessing the treatment response is to measure the tumor length and width by external calipers to estimate its volume. This procedure relies on an assumption of a spheroidal tumor shape wherein the tumor depth equals the width and can yield considerably inaccuracies.
View Article and Find Full Text PDFWe have previously investigated the biodistribution and therapy effect of a humanized monoclonal antibody targeting free prostate-specific antigen (fPSA) intended for theranostics of hormone-refractory prostate cancer. In the present study, we evaluated the off-target effect and different linear energy transfer (LET) radionuclides without the effect of PSA targeting by using an antibody with the same scaffold as previously used immunoconjugates but with random, non-specific, antigen binding region. This allows us to identify alterations generated by specific targeting and those related to passive bystander effects, such as enhanced permeability and retention (EPR).
View Article and Find Full Text PDFOne novel option for treating metastatic castration resistant prostate cancer is radionuclide therapy targeting prostate-specific membrane antigen (PSMA), e.g. [Lu]Lu-PSMA-617.
View Article and Find Full Text PDFProstate cancer (PC) is one of the most common malignancies affecting men, with poor prognosis after progression to metastatic castration-resistant prostate cancer (mCRPC). Radioligand therapy (RLT) targeting the overexpressed PSMA on PC cells, with, e.g.
View Article and Find Full Text PDFMetastatic castration-resistant prostate cancer is today incurable. Conventional imaging methods have limited detection, affecting their ability to give an accurate outcome prognosis, and current therapies for metastatic prostate cancer are insufficient. This inevitably leads to patients relapsing with castration-resistant prostate cancer.
View Article and Find Full Text PDFCancers (Basel)
July 2021
Background: The humanized monoclonal antibody (mAb) hu5A10 specifically targets and internalizes prostate cancer cells by binding to prostate specific antigen (PSA). Preclinical evaluations have shown that hu5A10 is an excellent vehicle for prostate cancer (PCa) radiotheranostics. We studied the impact of different chelates and conjugation ratios on hu5A10's target affinity, neonatal fc-receptor interaction on in vivo targeting efficacy, and possible enhanced therapeutic efficacy.
View Article and Find Full Text PDFAnti-prostate specific membrane antigen (PSMA) radioligand therapy is promising but not curative in castration resistant prostate cancer. One way to broaden the therapeutic index could be to administer higher doses in combination with radioprotectors, since administered radioactivity is kept low today in order to avoid side-effects from a high absorbed dose to healthy tissue. Here, we investigated the human radical scavenger α-microglobulin (A1M) together with 177-Lutetium (Lu) labeled PSMA-617 in preclinical models with respect to therapeutic efficacy and kidney toxicity.
View Article and Find Full Text PDFPurpose: Most patients with prostate cancer treated with androgen receptor (AR) signaling inhibitors develop therapeutic resistance due to restoration of AR functionality. Thus, there is a critical need for novel treatment approaches. Here we investigate the theranostic potential of hu5A10, a humanized mAb specifically targeting free PSA ().
View Article and Find Full Text PDFA promising strategy to enable patient stratification for targeted therapies is to monitor the target expression in a tumor by radionuclide molecular imaging. Affibody molecules (7 kDa) are nonimmunoglobulin scaffold proteins with a 25-fold smaller size than intact antibodies. They have shown an apparent potential as molecular imaging probes both in preclinical and clinical studies.
View Article and Find Full Text PDFAffibody molecules are small scaffold-based affinity proteins with promising properties as probes for radionuclide-based molecular imaging. However, a high reabsorption of radiolabeled Affibody molecules in kidneys is an issue. We have shown that the use of (125)I-3-iodo-((4-hydroxyphenyl)ethyl)maleimide (IHPEM) for site-specific labeling of cysteine-containing Affibody molecules provides high tumor uptake but low radioactivity retention in kidneys.
View Article and Find Full Text PDFAffibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of (188)Re-labeled anti-HER2 affibody molecules.
View Article and Find Full Text PDFUnlabelled: Affibody molecules are small (7 kDa) nonimmunoglobulin scaffold proteins with favorable tumor-targeting properties. Studies concerning the influence of chelators on biodistribution of (99m)Tc-labeled Affibody molecules demonstrated that the variant with a C-terminal glycyl-glycyl-glycyl-cysteine peptide-based chelator (designated ZHER2:V2) has the best biodistribution profile in vivo and the lowest renal retention of radioactivity. The aim of this study was to evaluate (188)Re-ZHER2:V2 as a potential candidate for radionuclide therapy of human epidermal growth factor receptor type 2 (HER2)-expressing tumors.
View Article and Find Full Text PDFAffibody molecules, small (7 kDa) scaffold proteins, are a promising class of probes for radionuclide molecular imaging. Radiolabeling of Affibody molecules with the positron-emitting nuclide 68Ga would permit the use of positron emission tomography (PET), providing better resolution, sensitivity, and quantification accuracy than single-photon emission computed tomography (SPECT). The synthetic anti-HER2 ZHER2:S1 Affibody molecule was conjugated with DOTA at the N-terminus, in the middle of helix 3, or at the C-terminus.
View Article and Find Full Text PDFPlatelet-derived growth factor receptor β (PDGFRβ) is a transmembrane tyrosine kinase receptor involved, for example, in angiogenesis. Overexpression and excessive signaling of PDGFRβ has been observed in multiple malignant tumors and fibrotic diseases, making this receptor a pharmaceutical target for monoclonal antibodies and tyrosine kinase inhibitors. Successful targeted therapy requires identification of responding patients.
View Article and Find Full Text PDFPurpose: Human epidermal growth factor receptor type 3 (HER3) is a transmembrane receptor tyrosine kinase belonging to the HER (ErbB) receptor family. Membranous expression of HER3 is associated with trastuzumab resistance in breast cancer and the transition to androgen independence in prostate cancer. Imaging of HER3 expression in malignant tumors may provide important diagnostic information that can influence patient management.
View Article and Find Full Text PDFAffibody molecules are a class of affinity agents for molecular imaging based on a non-immunoglobulin protein scaffold. Previous studies have demonstrated high contrast for in vivo imaging of cancer-associated molecular abnormalities using Affibody molecules. Using the radionuclide (18)F for labeling and PET as the imaging modality, the sensitivity of molecular imaging using Affibody molecules can be further increased.
View Article and Find Full Text PDFAffibody molecules are a class of small (7 kDa) non-immunoglobulin scaffold-based affinity proteins, which have demonstrated substantial potential as probes for radionuclide molecular imaging. The use of positron emission tomography (PET) would further increase the resolution and quantification accuracy of Affibody-based imaging. The rapid in vivo kinetics of Affibody molecules permit the use of the generator-produced radionuclide (68)Ga (T1/2=67.
View Article and Find Full Text PDFAccurate detection of cancer-associated molecular abnormalities in tumors could make cancer treatment more personalized. Affibody molecules enable high contrast imaging of tumor-associated protein expression shortly after injection. The use of the generator-produced positron-emitting radionuclide (68)Ga should increase sensitivity of HER2 imaging.
View Article and Find Full Text PDFEngineered affibody molecules can be used for high contrast in vivo molecular imaging. Extending a recombinantly produced HER2 binding affibody molecule with a hexa-histidine tag allows for convenient purification by immobilized metal-ion affinity chromatography and labeling with [(99m)Tc(CO)3](+) but increases radioactivity uptake in the liver. To investigate the impact of charge, lipophilicity, and position on biodistribution, 10 variants of a histidine-based tag was attached to a HER2 binding affibody molecule.
View Article and Find Full Text PDFPurpose: Radionuclide imaging of insulin-like growth factor type 1 receptor (IGF-1R) expression in tumours might be used for selection of patients who would benefit from IGF-1R-targeted therapy. We have previously shown the feasibility of IGF-1R imaging using the Affibody molecule (111)In-DOTA-His(6)-Z(IGF1R:4551). The use of (99m)Tc instead of (111)In should improve sensitivity and resolution of imaging, and reduce the dose burden to patients.
View Article and Find Full Text PDFAffibody molecules are a class of affinity proteins. Their small size (7 kDa) in combination with the high (subnanomolar) affinity for a number of cancer-associated molecular targets makes them suitable for molecular imaging. Earlier studies demonstrated that the selection of radionuclide and chelator may substantially influence the tumor-targeting properties of affibody molecules.
View Article and Find Full Text PDFCancer Biother Radiopharm
May 2012
This study investigated the feasibility of targeting the free, unbound forms of prostate-specific antigen (fPSA) for in vivo imaging of prostate adenocarcinomas (PCa), as PSA is produced and secreted at abundance during every clinical stage and grade of PCa, including castration-resistant disease. We injected (125)I-labeled monoclonal antibody PSA30 (specific for an epitope uniquely accessible on fPSA alone) intravenously in male nude mice carrying subcutaneous xenografts of LNCaP tumors (n=36). Mice were sacrificed over a time course from 4 hours to 13 days after injecting (125)I-labeled PSA30.
View Article and Find Full Text PDF