The currently used pesticides are mostly semi-volatile organic compounds. As a result, a fraction of them can be adsorbed on atmospheric aerosol surface. Their atmospheric photolysis is poorly documented, and gaps persist in understanding their reactivity in the particle phase.
View Article and Find Full Text PDFReactive oxygen species (ROS) play a central role in adverse health effects of air pollutants. Respiratory deposition of fine air particulate matter can lead to the formation of ROS in epithelial lining fluid, potentially causing oxidative stress and inflammation. Secondary organic aerosols (SOA) account for a large fraction of fine particulate matter, but their role in adverse health effects is unclear.
View Article and Find Full Text PDFTerbuthylazine (TBA) is a widely used herbicide, and its heterogeneous reaction with OH radicals is important for assessing its potential to undergo atmospheric long-range transport and to affect the environment and public health. The apparent reaction rate coefficients obtained in different experimental investigations, however, vary by orders of magnitude depending on the applied experimental techniques and conditions. In this study, we used a kinetic multilayer model of aerosol chemistry with reversible surface adsorption and bulk diffusion (KM-SUB) in combination with a Monte Carlo genetic algorithm to simulate the measured decay rates of TBA.
View Article and Find Full Text PDFMineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model.
View Article and Find Full Text PDFThe persistent organic pollutants (POPs) due to their physicochemical properties can be widely spread all over the globe; as such they represent a serious threat to both humans and wildlife. According to Stockholm convention out of 24 officially recognized POPs, 16 are pesticides. The atmospheric life times of pesticides, up to now were estimated based on their gas-phase reactivity.
View Article and Find Full Text PDFThe heterogeneous reactions of gas-phase ozone and two pyrethroid pesticides, deltamethrin and permethrin, which are the most frequently applied insecticides today, has been investigated. Tentative identifications of heterogeneous ozonolysis products of both pesticides reveal that the reaction mechanisms differ and are mainly influenced by the presence of the cyano moiety at the α-position of deltamethrin (pyrethroid type II). The mechanism study also suggests the important role of water.
View Article and Find Full Text PDF