Unlabelled: In protein evolution, diversification is generally driven by genetic duplication. The hallmarks of this mechanism are visible in the repeating topology of various proteins. In outer membrane β-barrels, duplication is visible with β-hairpins as the repeating unit of the barrel.
View Article and Find Full Text PDFOuter membrane proteins have remarkably homogeneous structure. They are all up down β-barrels. Up down barrels themselves are composed of repeated sets of β-hairpins.
View Article and Find Full Text PDFOuter membrane proteins (OMPs) are the proteins in the surface of Gram-negative bacteria. These proteins have diverse functions but a single topology: the β-barrel. Sequence analysis has suggested that this common fold is a β-hairpin repeat protein, and that amplification of the β-hairpin has resulted in 8-26-stranded barrels.
View Article and Find Full Text PDFMembrane proteins are the gateway to the cell. These proteins are also a control center of the cell, as information from the outside is passed through membrane proteins as signals to the cellular machinery. The design of membrane proteins seeks to harness the power of these gateways and signal carriers.
View Article and Find Full Text PDFThe increasing number of solved membrane protein structures has led to the recognition of a common feature in a large fraction of the small-molecule transporters: inverted repeat structures, formed by two fused homologous membrane domains with opposite orientation in the membrane. An evolutionary pathway in which the ancestral state is a single gene encoding a dual-topology membrane protein capable of forming antiparallel homodimers has been posited. A gene duplication event enables the evolution of two oppositely orientated proteins that form antiparallel heterodimers.
View Article and Find Full Text PDFThe quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned.
View Article and Find Full Text PDFMotivation: Outer membrane beta-barrels (OMBBs) are the proteins found in the outer membrane of bacteria, mitochondria and chloroplasts. There are thousands of beta-barrels reported in genomic databases with ∼2-3% of the genes in gram-negative bacteria encoding these proteins. These proteins have a wide variety of biological functions including active and passive transport, cell adhesion, catalysis and structural anchoring.
View Article and Find Full Text PDFThe bacterial multidrug transporter EmrE is a dual-topology membrane protein and as such is able to insert into the membrane in two opposite orientations. The functional form of EmrE is a homodimer; however, the relative orientation of the subunits in the dimer is under debate. Using EmrE variants with fixed, opposite orientations in the membrane, we now show that, although the proteins are able to form parallel dimers, an antiparallel organization of the subunits in the dimer is preferred.
View Article and Find Full Text PDFThe mechanism by which multispanning helix-bundle membrane proteins are inserted into their target membrane remains unclear. In both prokaryotic and eukaryotic cells, membrane proteins are inserted cotranslationally into the lipid bilayer. Positively charged residues flanking the transmembrane helices are important topological determinants, but it is not known whether they act strictly locally, affecting only the nearest transmembrane helices, or can act globally, affecting the topology of the entire protein.
View Article and Find Full Text PDFA variety of methods exist for the design or selection of antibodies and other proteins that recognize the water-soluble regions of proteins; however, companion methods for targeting transmembrane (TM) regions are not available. Here, we describe a method for the computational design of peptides that target TM helices in a sequence-specific manner. To illustrate the method, peptides were designed that specifically recognize the TM helices of two closely related integrins (alphaIIbbeta3 and alphavbeta3) in micelles, bacterial membranes, and mammalian cells.
View Article and Find Full Text PDF