Publications by authors named "Joanna Pranczk"

The influence of the different side chain residues on the thermodynamic and kinetic parameters for complexation reactions of the Co and Ni ions has been investigated by using the isothermal titration calorimetry (ITC) technique supported by potentiometric titration data. The study was concerned with the 2 common tripodal aminocarboxylate ligands, namely, nitrilotriacetic acid and N-(2-hydroxyethyl) iminodiacetic acid. Calorimetric measurements (ITC) were run in the 2-(N-morpholino)ethanesulfonic acid hydrate (2-(N-morpholino) ethanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and dimethylarsenic acid buffers (0.

View Article and Find Full Text PDF

The influence of the oxydiacetate (ODA) and thiodiacetate (TDA) ligands on the physicochemical and biological properties of the oxidovanadium(IV) ternary complexes of the VO(L)(B) type, where L denotes ODA or TDA and B denotes 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen), has been investigated. The stability of the complexes in aqueous solutions, assessed based on the potentiometric titration method, increases in the following direction: VO(TDA)(bipy) < VO(ODA)(bipy) < VO(TDA)(phen) < VO(ODA)(phen). Furthermore, the influence of the TDA and ODA ligands on the antioxidant activity of the oxidovanadium(IV) complexes toward superoxide free radical (O), 2,2'-azinobis(3-ethylbenzothiazoline-6 sulfonic acid) cation radical (ABTS) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) has been examined and discussed.

View Article and Find Full Text PDF

The aim of this work was to find a relationship between physicochemical properties of the oxovanadium(IV) complexes, namely [VO(ODA)(H2O)2], [VO(ODA)(phen)]·1.5H2O and [VO(ODA)(bipy)]·2H2O (ODA = oxydiacetate) as well as [VO(H2O)5](2+), and their biological activity. A potentiometric titration method has been used to characterize the stability of the complexes in aqueous solutions.

View Article and Find Full Text PDF

The potentiometric and conductometric titration methods have been used to characterize the stability of series of VO(IV)-, Co(II)- and Ni(II)-oxydiacetato complexes in DMSO-water solutions containing 0-50 % (v/v) DMSO. The influence of DMSO as a co-solvent on the stability of the complexes as well as the oxydiacetic acid was evaluated. Furthermore, the reactivity of the complexes towards superoxide free radicals was assessed by employing the nitro blue tetrazolium (NBT) assay.

View Article and Find Full Text PDF

The fluorescence quenching of norfloxacin, danofloxacin, enrofloxacin and levofloxacin, belonging to a group of fluoroquinolone antibiotics, by 4-hydroxy-TEMPO was studied in aqueous solutions with the use of steady-state, time-resolved fluorescence spectroscopy as well as UV-VIS absorption spectroscopy methods. In order to understand the mechanism of quenching the absorption and fluorescence emission spectra of all fluoroquinolone antibiotics studied as well as decreases of their fluorescence were registered as a function of the 4-hydroxy-TEMPO concentration. No deviations from a linearity in the Stern-Volmer plots (determined from both, steady-state and time-resolved measurements) were observed.

View Article and Find Full Text PDF

The purpose of this study was to examine the application of the coordinated cis-[Cr(C2O4)(pm)(OH)2]+ cation where pm denotes pyridoxamine, as a specific sensing ion for the detection of hydrogen peroxide (H2O2). The proposed method for H2O2 detection includes two key steps. The first step is based on the nonenzymatic decarboxylation of pyruvate upon reaction with H2O2, while the second step is based on the interaction of cis-[Cr(C2O4)(pm)(OH2)2]+ with the CO2 released in the previous step.

View Article and Find Full Text PDF

The direct and accurate estimation of nitric dioxide levels is an extremely laborious and technically demanding procedure in the molecular diagnostics of inflammatory processes. The aim of this work is to demonstrate that a stop-flow technique utilizing a specific spectroscopic biosensor can be used for detection of nanomolar quantities of NO(2) in biological milieu. The use of novel compound cis-[Cr(C(2)O(4))(AaraNH(2))(OH(2))(2)](+) increases NO(2) estimation accuracy by slowing down the rate of NO(2) uptake.

View Article and Find Full Text PDF