Stereotactic radiosurgery is an established focal treatment for brain metastases with high local control rates. An important side-effect of stereotactic radiosurgery is the development of radionecrosis. On conventional MR imaging, radionecrosis and tumour progression often have similar appearances, but have contrasting management approaches.
View Article and Find Full Text PDFA robust treatment paradigm for spontaneous intracranial hypotension has yet to be agreed upon. We present retrospective data from the patient cohort at our UK regional neurosciences centre from 2010-2020 and describe our locally developed treatment pathway.Seventy-three patients were identified: 31 men and 42 women; mean age was 42 years.
View Article and Find Full Text PDFWe present a case of complete deficiency of the interferon alpha/beta receptor alpha chain (IFNAR1) in a child with fatal systemic hyperinflammation, apparently provoked by live-attenuated viral vaccination. Such pathologic hyperinflammation, fulfilling criteria for hemophagocytic lymphohistiocytosis, is an emerging phenotype accompanying inborn errors of type I interferon immunity.
View Article and Find Full Text PDFPurpose: The progressive loss of skeletal muscle and function (known as sarcopenia) has been shown to be associated with various adverse outcome measures. Sophisticated measurements of body composition are increasingly being incorporated into research studies to stratify patients into those with or without sarcopenia, monitor treatment effects, and predict complications. A typical approach is to select axial image(s) at the mid-lumbar level and use semi-automated software to identify and quantify the skeletal muscle area.
View Article and Find Full Text PDFThe ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation in the capacity for oxygen metabolism. The goal of this study was to test whether CBF/CMRO(2) coupling differed when these subpopulations of neurons were preferentially stimulated, using chromatic and luminance stimuli to preferentially stimulate either the blob or interblob regions.
View Article and Find Full Text PDFThe blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO(2) coupling relationship with activation, defined as n, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) provides an indirect reflection of neural activity change in the working brain through detection of blood oxygenation level dependent (BOLD) signal changes. Although widely used to map patterns of brain activation, fMRI has not yet met its potential for clinical and pharmacological studies due to difficulties in quantitatively interpreting the BOLD signal. This difficulty is due to the BOLD response being strongly modulated by two physiological factors in addition to the level of neural activity: the amount of deoxyhemoglobin present in the baseline state and the coupling ratio, n, of evoked changes in blood flow and oxygen metabolism.
View Article and Find Full Text PDFAlthough the acute stroke literature indicates that cerebral blood flow (CBF) may commonly be disordered in stroke survivors, limited research has investigated whether CBF remains aberrant in the chronic phase of stroke. A directed study of CBF in stroke is needed because reduced CBF (hypoperfusion) may occur in neural regions that appear anatomically intact and may impact cognitive functioning in stroke survivors. Hypoperfusion in neurologically-involved individuals may also affect BOLD signal in FMRI studies, complicating its interpretation with this population.
View Article and Find Full Text PDFMeasures of the spatial extent of functional activation are important for a number of functional magnetic resonance imaging (fMRI) applications, such as pre-surgical planning and longitudinal tracking of changes in brain activation with disease progression and drug treatment. The interpretation of the data from these applications can be complicated by inter-subject or inter-session variability in the measured fMRI signals. Prior studies have shown that modulation of baseline cerebral blood flow (CBF) can directly alter the functional CBF and blood oxygenation level dependent (BOLD) responses, suggesting that the spatial extents of functional activation maps based on these signals may also depend on baseline CBF.
View Article and Find Full Text PDFCalibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2).
View Article and Find Full Text PDFPrior measures of the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF) responses to a memory-encoding task within the medial temporal lobe have suggested that the coupling between functional changes in CBF and changes in the cerebral metabolic rate of oxygen (CMRO(2)) may be tighter in the medial temporal lobe as compared to the primary sensory areas. In this study, we used a calibrated functional magnetic resonance imaging (fMRI) approach to directly estimate memory-encoding-related changes in CMRO(2) and to assess the coupling between CBF and CMRO(2) in the medial temporal lobe. The CBF-CMRO(2) coupling ratio was estimated using a linear fit to the flow and metabolism changes observed across subjects.
View Article and Find Full Text PDFAlthough functional MRI (fMRI) based on blood oxygenation level-dependent (BOLD) signal changes is a sensitive tool for mapping brain activation, quantitative studies of the physiological effects of pharmacological agents using fMRI alone are difficult to interpret due to the complexities inherent in the BOLD response. Hypercapnia-calibrated BOLD methodology is potentially a more powerful physiological probe of brain function, providing measures of the changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). In this study, we implemented a quantitative R(2)* approach for assessing the BOLD response to improve the stability of repeated measurements, in combination with the calibrated BOLD method, to examine the CBF and CMRO(2) responses to caffeine ingestion.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) based on blood oxygenation level dependent (BOLD) signal changes is a sensitive tool for mapping brain activation, but quantitative interpretation of the BOLD response is problematic. The BOLD response is primarily driven by cerebral blood flow (CBF) changes, but is moderated by M, a scaling parameter reflecting baseline deoxyhemoglobin, and n, the ratio of fractional changes in CBF to cerebral metabolic rate of oxygen consumption (CMRO(2)). We compared M and n between cortical (visual cortex, VC) and subcortical (lentiform nuclei, LN) regions using a quantitative approach based on calibrating the BOLD response with a hypercapnia experiment.
View Article and Find Full Text PDFBlood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies using parallel imaging to reduce the readout window have reported a loss in temporal signal-to-noise ratio (SNR) that is less than would be expected given a purely thermal noise model. In this study, the impact of parallel imaging on the noise components and functional sensitivity of both BOLD and perfusion-based fMRI data was investigated. Dual-echo arterial spin labeling data were acquired on five subjects using sensitivity encoding (SENSE), at reduction factors (R) of 1, 2 and 3.
View Article and Find Full Text PDFUnlabelled: Individuals susceptible to high altitude pulmonary edema show altered pulmonary vascular responses within minutes of exposure to hypoxia. We hypothesized that a similar acute-phase vulnerability to hypoxia may exist in the brain of individuals susceptible to acute mountain sickness (AMS). In established AMS and high altitude cerebral edema, there is a propensity for vasogenic white matter edema.
View Article and Find Full Text PDFMagn Reson Imaging
October 2007
Sensitivity encoding (SENSE) is a magnetic resonance technique that unifies gradient and receive coil encoding. SENSE reconstructs the image by solving a large, ill-conditioned inverse problem, which generally requires regularization and preconditioning. The present study suggests a simple heuristic for determining the regularization parameter.
View Article and Find Full Text PDFPurpose: To implement a pulsed arterial spin labeling (ASL) technique in rats that accounts for cerebral blood flow (CBF) quantification errors due to arterial transit times (dt)-the time that tagged blood takes to reach the imaging slice-and outflow of the tag.
Materials And Methods: Wistar rats were subjected to air or 5% CO(2), and flow-sensitive alternating inversion-recovery (FAIR) perfusion images were acquired. For CBF calculation, we applied the double-subtraction strategy (Buxton et al.
To date, functional magnetic resonance imaging (fMRI) studies of the lateral geniculate nucleus (LGN) have primarily focused on measures of the blood oxygenation level dependent (BOLD) signal. Arterial spin labeling (ASL) is an MRI method that can provide direct measures of functional cerebral blood flow (CBF) changes. Because CBF is a well-defined physiological quantity that contributes to BOLD contrast, CBF measures can be used to improve the quantitative interpretation of fMRI studies.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) studies of the medial temporal lobe have primarily made use of the blood oxygenation level dependent (BOLD) response to neural activity. The interpretation of the BOLD signal as a measure of medial temporal lobe function can be complicated, however, by changes in the cerebrovascular system that can occur with both normal aging and age-related diseases, such as Alzheimer's disease. Quantitative measures of the functional cerebral blood flow (CBF) response offer a useful complement to BOLD measures and have been shown to aid in the interpretation of fMRI studies.
View Article and Find Full Text PDFIn this manuscript, basic principles of functional magnetic resonance imaging (fMRI) are reviewed. In the first section, two intrinsic mechanisms of magnetic resonance image contrast related to the longitudinal and transverse components of relaxing spins and their relaxation rates, T(1) and T(2), are described. In the second section, the biophysical mechanisms that alter the apparent transverse relaxation time, T(2*), in blood oxygenation level dependent (BOLD) studies and the creation of BOLD activation maps are discussed.
View Article and Find Full Text PDFThe study of brain function using MRI relies on acquisition techniques that are sensitive to different aspects of the hemodynamic response contiguous to areas of neuronal activity. For this purpose different contrasts such as arterial spin labeling (ASL) and blood oxygenation level dependent (BOLD) functional MRI techniques have been developed to investigate cerebral blood flow (CBF) and blood oxygenation, respectively. Analysis of such data typically proceeds by separate, linear modeling of the appropriate CBF or BOLD time courses.
View Article and Find Full Text PDFBolus tracking data obtained with paramagnetic intravascular tracers are commonly analyzed and quantified by the direct measurement of properties of the tissue concentration-time curve (e.g., time to peak (TTP)).
View Article and Find Full Text PDF