Background And Objectives: Canadian out-of-hospital blood transfusion programmes (OHBTPs) are emerging, to improve outcomes of trauma patients by providing pre-hospital transfusion from the scene of injury, given prolonged transport times. Literature is lacking to guide its implementation. Thus, we sought to gather technical transfusion medicine (TM)-specific practices across Canadian OHBTPs.
View Article and Find Full Text PDFWhile a wide range of experimental and commercial transfection reagents are currently available, persistent problems remain regarding their suitability for continued development. These include the transfection efficiency for difficult-to-transfect cell types and the risks of decreased cell viability that may arise from any transfection that does occur. Therefore, research is now turning toward alternative molecules that improve the toxicity profile of the gene delivery vector (GDV), while maintaining the transfection efficiency.
View Article and Find Full Text PDFIntroduction: Prostate cancer is a leading cause of cancer-related death in men and current treatments offer only a modest survival benefit in advanced stages of the disease. RNA interference (RNAi) is a therapeutic option that has received great attention in recent years with the potential to treat a variety of disorders, including prostate cancer. Transcription factors are cellular proteins that can up-regulate or down-regulate the transcription of genes and offer promising therapeutic targets.
View Article and Find Full Text PDFProgression of RNA interference-based gene silencing technologies for the treatment of disorders of the central nervous system (CNS) depends on the availability of efficient non-toxic nanocarriers. Despite advances in the field of nanotechnology undesired and non-specific interactions with different brain-cell types occur and are poorly investigated. To this end, we studied the cytotoxic and neuroinflammatory effects of widely-used transfection reagents and modified amphiphilic β-cyclodextrins (CDs).
View Article and Find Full Text PDFCytokine Growth Factor Rev
April 2013
Pattern recognition receptors (PRRs) are a family of germline encoded receptors responsible for the detection of "pathogen associated molecular patterns" (PAMPs) or host derived "damage associated molecular patterns" (DAMPs) which induce innate immune signalling to generate a pro-inflammatory profile within the host. Four main classes of PRRs are recognised, Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs) and C-type lectin receptors (CLRs). Abnormal activation of PRRs has been implicated in various autoimmune and inflammatory conditions including rheumatoid arthritis and asthma.
View Article and Find Full Text PDFThere is growing evidence that amorphous silica nanoparticles (SiO₂-NP) can cause an inflammatory response in the lung. We studied in vitro the effects of exposing human lung submucosal cells to SiO₂-NP of various sizes (10, 150, and 500 nm) for 2-24 h. Cell survival, reactive oxygen species (ROS), malondialdehyde (MDA) levels, cytokine production, inflammatory gene expression, and genotoxicity were measured after exposure of Calu-3 cells to 10SiO₂-NP in the presence or absence of the flavanoid fisetin and an antioxidant enzyme catalase.
View Article and Find Full Text PDF