Publications by authors named "Joanna Maria Ramos"

Phosphocreatine is a phosphorylated creatine molecule synthesized in the liver and transported to muscle cells where it is used for the temporary storage of energy. In Alzheimer's disease, the capture of glucose by cells is impaired, which negatively affects the Krebs cycle, leading to problems with the generation of phosphocreatine. Furthermore, the creatine-phosphocreatine system, regulated by creatine kinase, is affected in the brains of Alzheimer's disease patients.

View Article and Find Full Text PDF

The Alzheimer's disease is one of the most common neurodegenerative diseases that affect elderly population, due to the formation of β-amyloid protein aggregate and several symptoms, especially progressive cognitive decline. The result is a decrease in capture of glucose by cells leading to obliteration, meddling in the Krebs cycle, the principal biochemical route to the energy production leading to a decline in the levels of adenosine 5'-triphosphate. Aluminium(III) is connected to Alzheimer's and its ion provides raise fluidity of the plasma membrane, decrease cell viability and aggregation of amyloid plaques.

View Article and Find Full Text PDF

The glycinate-guanidoacetate nickel (II) complex was synthesized and obtained as a crystalline powder. The characterization of this complex was performed by means of the experimental methods: CHN-O elemental analysis, atomic absorption spectrometry, thermo-gravimetric analysis and infrared spectrum. Density functional theory calculations, DFT:B3LYP/6-31G and B3LYP/6-311G, were performed for the determination of geometrical structure and vibrational assignment for the glycinate-guanidoacetate nickel (II) complex.

View Article and Find Full Text PDF

The cysteinate glycinate cadmium(II) complex was synthesized and structural analysis was carried out using the following methods: determination of the C, H, N, S and O contents, thermogravimetry, infrared and Raman spectra. The most probable structure for the complex at a minimum of energy was calculated by the density functional theory (DFT):B3LYP/3-21G quantum mechanical method. The infrared and Raman spectra were analyzed and bands assigned through the DFT procedures, the stabilization energy being equal to: E(RB+HF-LYP)= -6442.

View Article and Find Full Text PDF

The trans-bis(glycine)nickel(II) complex was synthesized, and the Fourier transform infrared spectra in the regions 4000-370 cm(-1) and 700-30 cm(-1) were measured. Band deconvolution analysis and the second derivative of the infrared spectrum were also performed. The determination of the geometrical structure in the trans position of the glycine ligands around Ni(II) for the trans-bis(glycine)nickel(II) complex as well as the vibrational assignment were assisted by RHF/6-311G and by Density Functional Theory calculations, DFT:B3LYP/6-31G and 6-311G basis sets.

View Article and Find Full Text PDF

The bis-serinenickel(II) complex was synthesized, and the Fourier-transforms infrared spectra in the regions 4000-370 and 700-30 cm(-1) was measured. The second derivative spectra and band deconvolution analysis was also obtained. Density functional theory calculations, DFT:B3LYP/6-311G, were performed for the determination of geometrical structure and vibrational assignment for the bis-serinenickel(II) complex.

View Article and Find Full Text PDF

Vibrational assignment and structural determination for the guanidinoaceticserinenickel(II) complex have been made through DFT:B3LYP/6-31G calculations. A full discussion of the framework vibrational modes was done using as criteria the geometry study of distorted structures generated for the vibrational modes. Incidentally, the normal co-ordinate treatments have been made in order to clarify the assignments for the Ni(N)(2)(O)(2) structural fragment.

View Article and Find Full Text PDF

To elucidate tentative assignments of metal-ligand modes of thiosemicarbazide complexes, a structural study and a assignment of the normal vibrations of 2-methylthiosemicarbazide copper(II) nitrate, [Cu(2MeTSC)(2)(NO(3))(2)] have been done through the ab initio DFT: pBP86/DN** procedure, and through the normal coordinate analysis (NCA). In the vibrational calculations, the elongated CuONO(2) bonds of the nitrate groups were considered in the CS and CN tautomers of the complex. DFT calculations had revealed that the infrared spectra can be well interpreted through the CN tautomer, failing in the prediction of the -NO(2) group wavenumbers.

View Article and Find Full Text PDF