Publications by authors named "Joanna Malagocka"

Social insects are distinguished by their lifestyle of living in groups with division of labour, cooperative brood care, and reproduction limited to a few colony members. Social insects often build large colonies with remarkable densities of highly related individuals and this can lead to an increased pathogen pressure. Our review focuses on interactions of ants with two important taxonomic groups of fungi infecting ants: Hypocreales (Ascomycota) and Entomophthorales (Entomophthoromycotina), and their different infection strategies, including host manipulation for optimal spore dispersal in the specialised ant pathogens.

View Article and Find Full Text PDF

Insect-pathogenic fungi use subtilisin-like serine proteases (SLSPs) to degrade chitin-associated proteins in the insect procuticle. Most insect-pathogenic fungi in the order Hypocreales (Ascomycota) are generalist species with a broad host-range, and most species possess a high number of SLSPs. The other major clade of insect-pathogenic fungi is part of the subphylum Entomophthoromycotina (Zoopagomycota, formerly Zygomycota) which consists of high host-specificity insect-pathogenic fungi that naturally only infect a single or very few host species.

View Article and Find Full Text PDF

Among fungi from the order Entomophthorales (Entomophthoromycota), there are many specialized, obligatory insect-killing pathogens. Pandora formicae (Humber & Bałazy) Humber is a rare example of an entomophthoralean fungus adapted to exclusively infect social insects: wood ants from the genus Formica. There is limited information available on P.

View Article and Find Full Text PDF

Pandora formicae is an obligate entomopathogenic fungus from the phylum Entomophthoromycota, known to infect only ants from the genus Formica. In the final stages of infection, the fungus induces the so-called summit disease syndrome, manipulating the host to climb up vegetation prior to death and fixing the dead cadaver to the surface, all to increase efficient spore dispersal. To investigate this fascinating pathogen-host interaction, we constructed interaction transcriptome libraries from two final infection stages from the material sampled in the field: (1) when the cadavers were fixed, but the fungus had not grown out through the cuticle and (2) when the fungus was growing out from host cadaver and producing spores.

View Article and Find Full Text PDF