Background: Ulcerative colitis (UC) is associated with defects in colonic epithelial barriers as well as inflammation of the colon mucosa resulting from the recruitment of lymphocytes and neutrophils in the lamina propria. Patients afflicted with UC are at increased risk of colorectal cancer. Currently, UC management employs general anti-inflammatory strategies associated with a variety of side effects, including heightened risks of infection, in patients where the therapy is variably effective.
View Article and Find Full Text PDFBackground: Delivery of a pharmacologically effective drug dosage to a target tissue is critical. Barrett's epithelia are a unique challenge for drug delivery of orally administered zinc due to rapid transit down the esophageal lumen, incomplete absorptive differentiation of these epithelia, and the use of proton-pump inhibitor drugs abrogating intestinal uptake of supplemental zinc.
Methods: Barrett's esophagus patients were administered oral zinc gluconate (26 mg zinc twice daily) for 14 days prior to biopsy procurement.
Background And Aims: Earlier work by our group and others has documented improvement of epithelial barrier function in human gastrointestinal models. Here we tested zinc's ability to improve a renal epithelial model. Our aim was to compare the functional and structural effects of zinc on the tight junctional (TJ) complexes of these two very distinct epithelial cell types.
View Article and Find Full Text PDFBackground: Zinc deficiency is known to result in epithelial barrier leak in the GI tract. Precise effects of zinc on epithelial tight junctions (TJs) are only beginning to be described and understood. Along with nutritional regimens like methionine-restriction and compounds such as berberine, quercetin, indole, glutamine and rapamycin, zinc has the potential to function as a TJ modifier and selective enhancer of epithelial barrier function.
View Article and Find Full Text PDF