Most mitochondrial proteins originate from the cytosol and require transport into the organelle. Such precursor proteins must be unfolded to pass through translocation channels in mitochondrial membranes. Misfolding of transported proteins can result in their arrest and translocation failure.
View Article and Find Full Text PDFNeurodegenerative disorders pose a significant challenge to global healthcare, with Alzheimer's disease (AD) being one of the most prevalent forms. Early and accurate detection of amyloid-β (Aβ) (1-42) monomers, a key biomarker of AD pathology, is crucial for effective diagnosis and intervention of the disease. Current gold standard detection techniques for Aβ include enzyme-linked immunosorbent assay and surface plasmon resonance.
View Article and Find Full Text PDFGallium (Ga) is a low melting point metal in the liquid state in the biological environment which presents a unique combination of fluidity, softness, and metallic electrical and thermal properties. In this work, liquid Ga is proposed as a biocompatible electrode material for cell culture by electro-stimulation since the cytotoxicity of Ga is generally considered low and some Ga compounds have been reported to exhibit anti-bacterial and anti-inflammatory activities. Complementarily, polydopamine (PDA) was coated on liquid Ga to increase the attachment capability of cells on the liquid Ga electrode and provide enhanced biocompatibility.
View Article and Find Full Text PDFMany different types of inorganic materials are processed into nano/microparticles for medical utilization. The impact of selected key characteristics of these particles, including size, shape, and surface chemistries, on biological systems, is frequently studied in clinical contexts. However, one of the most important basic characteristics of these particles, their density, is yet to be investigated.
View Article and Find Full Text PDFPurpose: To analyze microtopography of 5 reusable Drysdale nucleus manipulator (DNM) paddled tips for sharp defects and evaluate their elemental composition to determine probable source, investigating 2 instruments (DNM 1 and 4) implicated in causing posterior capsule rupture (PCR) and 3 instruments with sharp edges identified by finger-tip interrogation intraoperatively.
Design: Experimental laboratory investigation.
Methods: DNM paddled tips were analyzed using scanning electron microscopy (SEM) to evaluate for sharp surface defects (number, dimensions), and subsequently energy dispersive x-ray spectroscopy (EDS) performed on sharp defects to determine their elemental composition.
Gallium (Ga) compounds, as the source of Ga ions (Ga), have been historically used as anti-inflammatories. Currently, the widely accepted mechanisms of the anti-inflammatory effects for Ga are rationalized on the basis of their similarities to ferric ions (Fe), which permits Ga to bind with Fe-binding proteins and subsequently disturbs the Fe homeostasis in the immune cells. Here in contrast to the classic views, our study presents the mechanisms of Ga as anti-inflammatory by delivering Ga nanodroplets (GNDs) into lipopolysaccharide-induced macrophages and exploring the processes.
View Article and Find Full Text PDFThe three-dimensional formation of bio-engineered tissue for applications such as cell-based meat requires critical interaction between the bioscaffold and cellular biomass. To explore the features underlying this interaction, we have assessed the commercially available bacterial nanocellulose (BNC) product from Cass Materials for its suitability to serve as a bioscaffold for murine myoblast attachment, proliferation, and differentiation. Rigorous application of both scanning electron microscopy and transmission electron microscopy reveals cellular details of this interaction.
View Article and Find Full Text PDFMitochondria undergo dynamic structural alterations to meet changing needs and to maintain homeostasis. We report here a novel mitochondrial structure. Conventional transmission electron microscopic examination of murine embryonic fibroblasts treated with carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, found that more than half of the mitochondria presented a ring-shaped or C-shaped morphology.
View Article and Find Full Text PDFStructural and functional changes to the uterus associated with maintenance of pregnancy are controlled primarily by steroid hormones such as progesterone. We tested the hypothesis that progesterone regulates uterine structural changes during pregnancy in the viviparous skink, Pseudemoia entrecasteauxii, by treating pregnant females with the progesterone receptor antagonist mifepristone at different stages of pregnancy. Expression and distribution of progesterone receptor was determined using Western blot and immunohistochemistry.
View Article and Find Full Text PDFCaco-2 cells, which are known to spontaneously differentiate in cell culture, adopt typical epithelial characteristics and are widely used as a model to study cellular uptake, transport and metabolism processes. However, groups of flat and undifferentiated cells have been observed amid differentiating Caco-2 cell monolayers. In this study, we isolated and characterised these morphologically distinct, flat and island-forming Caco-2 cells.
View Article and Find Full Text PDFCaveolae are plasma-membrane invaginations that, by interacting with membrane-associated molecules such as endothelial nitric oxide synthase and tyrosine kinases, precisely regulate cell-signalling pathways responsible for cell structure and cell function. Indeed, there is widespread evidence that caveolae associate, structurally and functionally, with proteins, lipids and solutes to facilitate transcellular transport of these macromolecules. Caveolin-1, one of the family of membrane proteins that form caveolae, is most prominently expressed in endothelial cells of the vascular bed.
View Article and Find Full Text PDFNanoparticles with an iron core and gold shell (denoted "Fe@AuÓ") have been reported to limit cancer-cell proliferation and therefore have been proposed as a potential anti-cancer agent. However, the underlying mechanisms are still unknown. In this study, we used flow cytometry, confocal fluorescence microscopy, and transmission electron microscopy to analyse the morphological and functional alterations of mitochondria in cancerous cells and healthy cells when treated with Fe@Au.
View Article and Find Full Text PDFAim: To characterise differences between three widely used colorectal cancer cell lines using ultrastructural selective staining for glycogen to determine variation in metastatic properties.
Methods: Transmission electron microscopy was used in this investigation to help identify intracellular structures and morphological features which are precursors of tumor invasion. In addition to morphological markers, we used selective staining of glycogen as a marker for neoplastic cellular proliferation and determined whether levels of glycogen change between the three different cell lines.
Australian species of viviparous skinks have noninvasive epitheliochorial placentation where there is no breeching or interruption of the uterine epithelial cell barrier. This is contrary to some African and South American species of skinks which exhibit invading chorionic cells and a localized endotheliochorial placenta. The desmosomes, which maintain the adhesive properties of the junctional complex between uterine epithelial cells, were found to decrease as gestation progressed in the uterus of two highly placentotrophic Australian skinks, but no changes in desmosomal numbers were present in the uterus of two Australian oviparous skinks or viviparous skinks with a simple placenta.
View Article and Find Full Text PDFIn addition to water and small inorganic ions, macromolecules traverse the uterine epithelium in viviparous skinks to be absorbed by the developing fetus. In some species of lizards with complex placenta, the paracellular pathway across the uterine epithelium becomes tighter and more highly regulated as gestation progresses, suggesting that the transcellular pathway may be an alternative route for molecules to travel across the epithelium. In this study, we identified an extensive formation of a lysosomal system in the apical region of uterine epithelial cells in the highly secretory omphaloplacental region of the skink placenta in two species from the Pseudemoia genus.
View Article and Find Full Text PDFClaudin-5, a tight junctional protein associated with ion and size selectivity, has been found in the uterus of skinks. This study has generated critical information about the molecular assembly of the tight junction at various stages of the reproductive cycle in the skink uterus. Recent studies looking at tight junctional proteins found occludin expression in the tight junction region of uterine epithelial cells in the skink uterus; however, occludin did not disclose any further information about the ions and size of ions permeating across the paracellular pathway.
View Article and Find Full Text PDFOccludin, an integral protein associated with the mammalian tight junction, has for the first time been identified in the uterus of squamate reptiles. The tight junction is made up of anastamosing strands and forms a selective barrier that regulates paracellular diffusion of solutes across uterine epithelium. Occludin exclusively labels tight junctional strands and is an excellent marker for tight junction permeability.
View Article and Find Full Text PDFThe structural features of the uterine epithelium of the chorioallantoic placenta and omphalloplacenta in the viviparous Australian skink, Pseudemoia entrecasteauxii, were investigated using SEM and TEM techniques. In particular, the structural characteristics that would allow interpretation of function were analyzed, particularly those of gas exchange in the chorioallantoic placenta and histotrophy in the omphaloplacenta. Pseudemoia entrecasteauxii has a complex placenta consisting of a placentome, paraplacentome, and omphaloplacenta.
View Article and Find Full Text PDF