T cell entry into inflamed tissue involves firm adhesion, spreading, and migration of the T cells across endothelial barriers. These events depend on "outside-in" signals through which engaged integrins direct cytoskeletal reorganization. We investigated the molecular events that mediate this process and found that T cells from mice lacking expression of the adaptor protein Crk exhibited defects in phenotypes induced by the integrin lymphocyte function-associated antigen 1 (LFA-1), namely, actin polymerization, leading edge formation, and two-dimensional cell migration.
View Article and Find Full Text PDFDuring valvulogenesis, globular endocardial cushions elongate and remodel into highly organized thin fibrous leaflets. Proper regulation of this dynamic process is essential to maintain unidirectional blood flow as the embryonic heart matures. In this study, we tested how mechanosensitive small GTPases, RhoA and Rac1, coordinate atrioventricular valve (AV) differentiation and morphogenesis.
View Article and Find Full Text PDFIntegr Biol (Camb)
January 2016
The stiffening of blood vessel walls is associated with inflammatory diseases, including atherosclerosis, diabetes, and obesity. These diseases are driven by the excessive recruitment of inflammatory leukocytes out of the bloodstream and into tissues, but whether vascular stiffening plays a direct role in this process is not clear. In this study, we investigated the possibility that leukocyte capture from blood flow is enhanced on stiffer substrates.
View Article and Find Full Text PDFTumor-initiating cells (TIC) perpetuate tumor growth, enable therapeutic resistance, and drive initiation of successive tumors. Virtually nothing is known about the role of mechanotransductive signaling in controlling TIC tumorigenesis, despite the recognized importance of altered mechanics in tissue dysplasia and the common observation that extracellular matrix (ECM) stiffness strongly regulates cell behavior. To address this open question, we cultured primary human glioblastoma (GBM) TICs on laminin-functionalized ECMs spanning a range of stiffnesses.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
September 2014
The ability of macrophages to migrate to sites of infection and inflammation is critical for their role in the innate immune response. Macrophage cell lines have made it possible to study the roles of individual proteins responsible for migration using molecular biology, but it has not been possible to reliably elicit the motility of macrophage cell lines in two dimensions. In the past, measurements of the motility of macrophage cell lines have been largely limited to transwell assays which provide limited quantitative information on motility and limited ability to visualize cell morphology.
View Article and Find Full Text PDFIntegr Biol (Camb)
September 2014
The GTPases RhoA and Rac1 are key regulators of cell spreading, adhesion, and migration, and they exert distinct effects on the actin cytoskeleton. While RhoA classically stimulates stress fiber assembly and contraction, Rac1 promotes branched actin polymerization and membrane protrusion. These competing influences are reinforced by antagonistic crosstalk between RhoA and Rac1, which has complicated efforts to identify the specific mechanisms by which each GTPase regulates cell behavior.
View Article and Find Full Text PDFThe ability to independently assemble multiple cell types within a three-dimensional matrix would be a powerful enabling tool for modeling and engineering complex tissues. Here we introduce a strategy to dynamically pattern distinct subpopulations of cells through genetic regulation of cell motility. We first describe glioma cell lines that were genetically engineered to stably express constitutively active or dominant negative Rac1 GTPase mutants under the control of either a doxycycline-inducible or cumate-inducible promoter.
View Article and Find Full Text PDFThe low detection sensitivity of enzyme linked immunosorbent assays (ELISAs) is a central problem in science and limits progress in multiple areas of biology and medicine. In this report we demonstrate that the hydrocyanines, a family of fluorescent reactive oxygen species (ROS) probes, can act as turn on fluorescent horseradish peroxidase (HRP) probes and thereby increase the sensitivity of conventional ELISAs by two orders of magnitude.
View Article and Find Full Text PDFMethods Mol Biol
February 2013
Atomic force microscopy (AFM) is a powerful and versatile tool for probing the mechanical properties of biological samples. This chapter describes the procedures for using AFM indentation to measure the elastic moduli of living cells. We include step-by-step instructions for cantilever calibration and data acquisition using a combined AFM/optical microscope system, as well as a detailed protocol for data analysis.
View Article and Find Full Text PDFCellular mechanical properties have emerged as central regulators of many critical cell behaviors, including proliferation, motility, and differentiation. Although investigators have developed numerous techniques to influence these properties indirectly by engineering the extracellular matrix (ECM), relatively few tools are available to directly engineer the cells themselves. Here we present a genetic strategy for obtaining graded, dynamic control over cellular mechanical properties by regulating the expression of mutant mechanotransductive proteins from a single copy of a gene placed under a repressible promoter.
View Article and Find Full Text PDFAlthough RNA-mediated interference (RNAi) is a widely conserved process among eukaryotes, including many fungi, it is absent from the budding yeast Saccharomyces cerevisiae. Three human proteins, Ago2, Dicer and TRBP, are sufficient for reconstituting the RISC complex in vitro. To examine whether the introduction of human RNAi genes can reconstitute RNAi in S.
View Article and Find Full Text PDFThe study of how cell behavior is controlled by the biophysical properties of the extracellular matrix (ECM) is limited in part by the lack of three-dimensional (3D) scaffolds that combine the biofunctionality of native ECM proteins with the tunability of synthetic materials. Here, we introduce a biomaterial platform in which the biophysical properties of collagen I are progressively altered by adding agarose. We find that agarose increases the elasticity of 3D collagen ECMs over two orders of magnitude with modest effect on collagen fiber organization.
View Article and Find Full Text PDF