Nucleic acids (RNA and DNA) play crucial roles in all living organisms and find wide utility in clinical settings. The convergence of rationally designed nucleic acid multistranded assemblies with embedded therapeutic properties has led to the development of a platform based on nucleic acid nanoparticles (NANPs). NANPs incorporate various functional moieties to deliver their combinations to diseased cells in a highly controlled manner.
View Article and Find Full Text PDFDifferent therapeutic nucleic acids (TNAs) can be unified in a single structure by their elongation with short oligonucleotides designed to self-assemble into nucleic acid nanoparticles (NANPs). With this approach, therapeutic cocktails with precisely controlled composition and stoichiometry of active ingredients can be delivered to the same diseased cells for enhancing pharmaceutical action. In this work, an additional nanotechnology-based therapeutic option that enlists a biocompatible NANP-encoded platform for their controlled patient-specific immunorecognition is explored.
View Article and Find Full Text PDFNucleic acid-based technologies are an emerging research focus area for pharmacological and biological studies because they are biocompatible and can be designed to produce a variety of scaffolds at the nanometer scale. The use of nucleic acids (ribonucleic acid (RNA) and/or deoxyribonucleic acid (DNA)) as building materials in programming the assemblies and their further functionalization has recently established a new exciting field of RNA and DNA nanotechnology, which have both already produced a variety of different functional nanostructures and nanodevices. It is evident that the resultant architectures require detailed structural and functional characterization and that a variety of technical approaches must be employed to promote the development of the emerging fields.
View Article and Find Full Text PDFBicelles are used in many membrane protein studies because they are thought to be more bilayer-like than micelles. We investigated the properties of "isotropic" bicelles by small-angle neutron scattering, small-angle X-ray scattering, fluorescence anisotropy, and molecular dynamics. All data suggest that bicelles with a q value below 1 deviate from the classic bicelle that contains lipids in the core and detergent in the rim.
View Article and Find Full Text PDFIonic liquids are being intensely studied as promising media for the stabilization of proteins and other biomolecules. Choline dihydrogen phosphate (CDHP) has been identified as one of the most promising candidates for this application. In this work we have probed in more detail the effects that CDHP may have on the thermodynamics, structure, and stability of proteins, including one of therapeutic interest.
View Article and Find Full Text PDFThe crystal structures of the dehaloperoxidase-hemoglobin from A. ornata (DHP A) each report a crystallographic dimer in the unit cell. Yet, the largest dimer interface observed is 450 Å(2), an area significantly smaller than the typical value of 1200-2000 Å(2) and in contrast to the extensive interface region of other known dimeric hemoglobins.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2010
Human antibody IgG1 b12 is one of the four antibodies known to neutralize a broad range of human immunodeficiency virus-1. The crystal structure of this antibody displayed an asymmetric disposition of the Fab arms relative to its Fc portion. Comparison of structures solved for other IgG1 antibodies led to a notion that crystal packing forces entrapped a "snap-shot" of different conformations accessible to this antibody.
View Article and Find Full Text PDFSeveral bacterial solute transport mechanisms involve members of the periplasmic binding protein (PBP) superfamily that bind and deliver ligand to integral membrane transport proteins in the ATP-binding cassette, tripartite tricarboxylate transporter, or tripartite ATP-independent (TRAP) families. PBPs involved in ATP-binding cassette transport systems have been well characterized, but only a few PBPs involved in TRAP transport have been studied. We have measured the thermal stability, determined the oligomerization state by small angle x-ray scattering, and solved the x-ray crystal structure to 1.
View Article and Find Full Text PDFLigand binding induces shape changes within the four modular ectodomains (D1-D4) of the CD4 receptor, an important receptor in immune signaling. Small angle x-ray scattering (SAXS) on both a two-domain and a four-domain construct of the soluble CD4 (sCD4) is consistent with known crystal structures demonstrating a bilobal and a semi-extended tetralobal Z conformation in solution, respectively. Detection of conformational changes within sCD4 as a result of ligand binding was followed by SAXS on sCD4 bound to two different glycoprotein ligands: the tick saliva immunosuppressor Salp15 and the HIV-1 envelope protein gp120.
View Article and Find Full Text PDFGelsolin regulates the dynamic assembly and disassembly of the actin-based cytoskeleton in non-muscle cells and clears the circulation of filaments released following cell death. Gelsolin is a six-domain (G1-G6) protein activated by calcium via a multi-step process that involves unfolding from a compact form to a more open form in which the three actin-binding sites (on the G1, G2, and G4 subdomains) become exposed. To follow the global structural changes that accompany calcium activation of gelsolin, small-angle x-ray scattering (SAXS) data were collected for full-length human plasma gelsolin at nanomolar to millimolar concentrations of free Ca2+.
View Article and Find Full Text PDFWest Nile virus (WNV) can cause fatal murine and human encephalitis. The viral envelope protein interacts with host cells. A murine brain cDNA phage display library was therefore probed with WNV envelope protein, resulting in the identification of several adherent peptides.
View Article and Find Full Text PDFSalp15 is an Ixodes scapularis salivary protein that inhibits CD4+ T cell activation through the repression of TCR ligation-triggered calcium fluxes and IL-2 production. We show in this study that Salp15 binds specifically to the CD4 coreceptor on mammalian host T cells. Salp15 specifically associates through its C-terminal residues with the outermost two extracellular domains of CD4.
View Article and Find Full Text PDFThe Toll/Interleukin-1 receptor (TIR) domain of the Toll-like receptors (TLRs) plays an important role in innate host defense signaling. The TIR-TIR platform formed by the dimerization of two TLRs promotes homotypic protein-protein interactions with additional cytoplasmic adapter molecules to form an active signaling complex resulting in the expression of pro- and anti-inflammatory cytokine genes. To generate a better understanding of the functional domains of TLR2 we performed a random mutagenesis analysis of the human TLR2 TIR domain and screened for TLR2/1 signaling-deficient mutants.
View Article and Find Full Text PDFSmall-angle x-ray scattering data on the unliganded full-length fully glycosylated HIV-1 gp120, the soluble CD4 (domains 1-2) receptor, and their complex in solution are presented. Ab initio structure restorations using these data provides the first look at the envelope shape for the unliganded and the complexed gp120 molecule. Fitting known crystal structures of the unliganded SIV and the complexed HIV gp120 core regions within our resultant shape constraints reveals movement of the V3 loop upon binding.
View Article and Find Full Text PDFWe have gained new insight into the interactions between the second-messenger protein calmodulin (CaM) and myosin light chain kinase from skeletal muscle (skMLCK) using small-angle solution scattering and shape restoration. Specifically, we explored the nature of a 2Ca(2+)-CaM-skMLCK complex and compared it to a 4Ca(2+)-CaM-skMLCK complex under the same conditions. The 2Ca(2+) complex has been proposed to be physiologically relevant.
View Article and Find Full Text PDF