Background: The acute coronary syndrome (ACS) continues to be a fundamental indication for revascularization by percutaneous coronary intervention (PCI). Drug-eluting stent (DES) implantation remains a part of contemporary practice but permanent caging of the vascular structure with the metallic stent structure may increase the rate of device-related adverse clinical events. As an alternative to classic metallic DESs, the bioresorbable scaffolds (BRSs) have emerged as a temporary vascular support technology.
View Article and Find Full Text PDFIntroduction: Acute coronary syndrome (ACS) is a well-known risk factor for adverse clinical outcomes in percutaneous coronary intervention (PCI). Therefore, evaluation of coronary stents in this challenging clinical scenario can provide unique information on device safety and efficacy. Bioresorbable scaffolds (BRS) were designed to overcome long-term complications related to permanent vessel caging with a permanent metallic drug-eluting stent (DES).
View Article and Find Full Text PDFBackground: Diabetes type 2 is one of the strongest risk factors affecting coronary artery disease (CAD) and is also a marker of poor short and long-term prognosis in subjects with acute coronary syndrome (ACS) treated with percutaneous coronary intervention (PCI) with subsequent drug-eluting stent (DES) implantation. Chronic local vascular inflammation along with endothelial dysfunction is postulated to be the pathophysiological background of unfavorable results. The second generation of metallic magnesium BRS -Magmaris (Biotronik, Berlin, Germany) had been introduced to clinical practice to overcome these limitations.
View Article and Find Full Text PDFBackground: Percutaneous coronary intervention (PCI) in the acute coronary syndrome (ACS) setting is associated with a greater probability of device failure. The currently ongoing development of new scaffold technologies has concentrated an effort on improving the PCI outcomes, including the use of new biodegradable materials. This pilot study evaluates the performance of a magnesium bioresorbable scaffold (Magmaris, Biotronik, Germany) in comparison to the sirolimus-eluting bioresorbable polymer stents (BP-SES) (Ultimaster, Terumo, Japan) in the NSTE-ACS setting.
View Article and Find Full Text PDFBackground: Acute coronary syndrome (ACS) as a clinical manifestation of coronary artery disease (CAD) remains a significant cause of mortality and morbidity, as reported worldwide annually. The second generation of drug-eluting stents (DES) is a gold standard in percutaneous interventions in ACS patients however, permanent caging of the vessel with metallic DES has some drawbacks. Bioresorbable vascular scaffolds (BRS) were designed as a temporal vessel-supporting technology allowing for anatomical and functional restoration.
View Article and Find Full Text PDF