In this work, we investigated cyclohexane oxidative dehydrogenation (ODH) catalyzed by cobalt ferrite nanoparticles supported on reduced graphene oxide (RGO). We aim to identify the active sites that are specifically responsible for full and partial dehydrogenation using advanced spectroscopic techniques such as X-ray photoelectron emission microscopy (XPEEM) and X-ray photoelectron spectroscopy (XPS) along with kinetic analysis. Spectroscopically, we propose that Fe/T sites could exclusively produce benzene through full cyclohexane dehydrogenation, while kinetic analysis shows that oxygen-derived species (O*) are responsible for partial dehydrogenation to form cyclohexene in a single catalytic sojourn.
View Article and Find Full Text PDFThe effect of particle size and support on the catalytic performance of supported subnanometer copper clusters was investigated in the oxidative dehydrogenation of cyclohexene. From among the investigated seven size-selected subnanometer copper particles between a single atom and clusters containing 2-7 atoms, the highest activity was observed for the titania-supported copper tetramer with 100% selectivity toward benzene production and being about an order of magnitude more active than not only all the other investigated cluster sizes on the same support but also the same tetramer on the other supports, AlO, SiO, and SnO. In addition to the profound effect of cluster size on activity and with Cu outstanding from the studied series, Cu clusters supported on SiO provide an example of tuning selectivity through support effects when this particular catalyst also produces cyclohexadiene with about 30% selectivity.
View Article and Find Full Text PDF