Publications by authors named "Joanna E Grove"

Stem cell plasticity refers to the ability of adult stem cells to acquire mature phenotypes that are different from their tissue of origin. Adult bone marrow cells (BMCs) include two populations of bone marrow stem cells (BMCs): hematopoietic stem cells (HSCs), which give rise to all mature lineages of blood, and mesenchymal stem cells (MSCs), which can differentiate into bone, cartilage, and fat. In this article, we review the literature that lends credibility to the theory that highly plastic BMCs have a role in maintenance and repair of nonhematopoietic tissue.

View Article and Find Full Text PDF

Analysis of developmental plasticity of bone marrow-derived cells (BMDCs) is complicated by the possibility of cell-cell fusion. Here we demonstrate that epithelial cells can develop from BMDCs without cell-cell fusion. We use the Cre/lox system together with beta-galactosidase and enhanced green fluorescent protein expression in transgenic mice to identify epithelial cells in the lung, liver, and skin that develop from BMDCs without cell fusion.

View Article and Find Full Text PDF

Objective: For approximately 5% of autologous transplant recipients and a higher proportion of allogeneic transplant recipients, low level and delayed platelet engraftment is an ongoing problem. Mesenchymal stem cells (MSC), which can be derived from bone marrow as well as other organs, are capable of differentiation into multiple cell types and also support hematopoiesis in vitro. Because cotransplantation of marrow-derived stromal cells has been shown to enhance engraftment of human hematopoietic stem cells, we hypothesized that cotransplantation of MSC could enhance platelet and myeloid cell development.

View Article and Find Full Text PDF

Gene therapy application to pulmonary airways and alveolar spaces holds tremendous promise for the treatment of lung diseases. However, safe and effective long-term gene expression using viral and nonviral vectors has not yet been achieved. Adenoviral vectors, with a natural affinity for airway epithelia, have been partially effective, but are inflammatory and induce only transient gene expression.

View Article and Find Full Text PDF