Publications by authors named "Joanna E Gawecka"

Study Question: Do the luminal fluids of the epididymis and the vas deferens contribute to sperm chromatin fragmentation (SCF) in mice?

Summary Answer: The luminal fluids of both organs are required for activating SCF in mice, but the vas deferens luminal fluid does this more efficiently than that of the epididymis.

What Is Known Already: Mice sperm have the ability to degrade their DNA in an apoptotic-like fashion when treated with divalent cations in a process termed SCF. SCF has two steps: the induction of reversible double-strand DNA breaks at the nuclear matrix attachment sites, followed by the irreversible degradation of DNA by nuclease.

View Article and Find Full Text PDF

The highly condensed chromatin of mammalian spermatozoa is usually considered to be biologically inert before fertilization. However, we have demonstrated that even in this compacted state, sperm chromatin is subject to degradation at open configurations associated with the nuclear matrix through a process we have termed sperm chromatin fragmentation (SCF). This suggests that a mechanism exists to monitor the health of spermatozoa during transit through the male reproductive tract and to destroy the genome of defective sperm cells.

View Article and Find Full Text PDF

Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF). SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B) followed by irreversible DNA degradation by a nuclease(s).

View Article and Find Full Text PDF

Modulation of integrin activation is important in many cellular functions including adhesion, migration, and assembly of the extracellular matrix. RSK2 functions downstream of Ras/Raf and promotes tumor cell motility and metastasis. We therefore investigated whether RSK2 affects integrin function.

View Article and Find Full Text PDF

ERK and RSK2 drive proliferation and invasion of many cancers. Phosphoprotein enriched in astrocytes 15 (PEA15) binds ERK and RSK2 and high PEA15 levels can impair ERK- and RSK2-dependent transcription. PEA15 expression also inversely correlates with cell motility and invasiveness.

View Article and Find Full Text PDF

Background: Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins.

View Article and Find Full Text PDF

PEA-15 is a death effector domain-containing phosphoprotein that binds ERK and restricts it to the cytoplasm. PEA-15 also binds to FADD and thereby blocks apoptosis induced by death receptors. Abnormal expression of PEA-15 is associated with type II diabetes and some cancers; however, its physiological function remains unclear.

View Article and Find Full Text PDF