Universal stress proteins (USPs) are ubiquitously expressed in bacteria, archaea, and eukaryotes and play a lead role in adaptation to environmental conditions. They enable adaptation of bacterial pathogens to the conditions encountered in the human niche, including hypoxia, oxidative stress, osmotic stress, nutrient deficiency, or acid stress, thereby facilitating colonization. We previously reported that all six USP proteins encoded within a low-oxygen activated (lxa) locus in Burkholderia cenocepacia showed increased abundance during chronic colonization of the cystic fibrosis (CF) lung.
View Article and Find Full Text PDFFor nearly half of the proteome of an important pathogen, , the function has not yet been recognised. Here, we characterise one such mysterious protein PA2504, originally isolated by us as a sole partner of the RppH RNA hydrolase involved in transcription regulation of multiple genes. This study aims at elucidating details of PA2504 function and discussing its implications for bacterial biology.
View Article and Find Full Text PDFNudix proteins catalyse hydrolysis of pyrophosphate bonds in a variety of substrates and are ubiquitous in all domains of life. Their widespread presence and broad substrate specificity suggest that they have important cellular functions. In this review, we summarize the state of knowledge on microbial Nudix proteins involved in pathogenesis.
View Article and Find Full Text PDFNudix proteins catalyze the hydrolysis of pyrophosphate bonds in a variety of substrates and are ubiquitous in all domains of life. The genome of an important opportunistic human pathogen, Pseudomonas aeruginosa, encodes multiple Nudix proteins. To determine the role of nine Nudix hydrolases of the P.
View Article and Find Full Text PDFThe PA0336 protein from Pseudomonas aeruginosa belongs to the family of widely distributed Nudix pyrophosphohydrolases, which catalyze the hydrolysis of pyrophosphate bonds in a variety of nucleoside diphosphate derivatives. The amino acid sequence of the PA0336 protein is highly similar to that of the RppH Nudix RNA pyrophosphohydrolase from Escherichia coli, which removes pyrophosphate from 5'-end of triphosphorylated RNA transcripts. Trans-complementation experiments showed that the P.
View Article and Find Full Text PDF