Publications by authors named "Joanna D Davies"

Soon after diagnosis with type 1 diabetes (T1D), many patients experience a period of partial remission. A longer partial remission is associated with a better response to treatment, but the mechanism is not known. The frequency of CD4CD25CD127 (127-hi) cells, a cell subset with an anti-inflammatory Th2 bias, correlates positively with length of partial remission.

View Article and Find Full Text PDF

Transient partial remission, a period of low insulin requirement experienced by most patients soon after diagnosis, has been associated with mechanisms of immune regulation. A better understanding of such natural mechanisms of immune regulation might identify new targets for immunotherapies that reverse type 1 diabetes (T1D). In this study, using Cox model multivariate analysis, we validated our previous findings that patients with the highest frequency of CD4+CD25+CD127hi (127-hi) cells at diagnosis experience the longest partial remission, and we showed that the 127-hi cell population is a mix of Th1- and Th2-type cells, with a significant bias toward antiinflammatory Th2-type cells.

View Article and Find Full Text PDF

Background: Tumour growth can promote the loss of muscle mass and function. This is particularly disturbing because overall survival is significantly reduced in people with weaker and smaller skeletal muscle. The risk of cancer is also greater in people who are immune deficient.

View Article and Find Full Text PDF

CD4 T cells that co-express CD25 and CD127 (CD25CD127) make up around 20% of all circulating CD4 memory T cells in healthy people. The clinical significance of these cells is that in children with type 1 diabetes their relative frequency at diagnosis is significantly and directly correlated with rate of disease progression. The purpose of this study was to further characterize the CD25CD127 cells.

View Article and Find Full Text PDF

Purpose Of Review: Therapies that target beta-cell antigen-specific T cells subsets have not been as successful in patients with type 1 diabetes as in mice. This might be explained by complexities in the repertoire of beta-cell antigen-specific T cells and the variety of T cell subsets involved in type 1 diabetes development in human.

Recent Findings: T cells that infiltrate islets of people with type 1 diabetes (i) react towards known islet cell antigens but also unknown antigens, (ii) differ from one patient to another, and (iii) are also present in the circulation, but not in the islets, of healthy people.

View Article and Find Full Text PDF

Partial remission in patients newly diagnosed with type 1 diabetes is a period of good glucose control that can last from several weeks to over a year. The clinical significance of the remission period is that patients might be more responsive to immunotherapy if treated within this period. This article provides clinical data that indicates the level of glucose control and insulin-secreting β-cell function of each patient in the study at baseline (within 3 months of diagnosis), and at 3, 6, 9, 12, 18 and 24 months post-baseline.

View Article and Find Full Text PDF

In some patients with type 1 diabetes the dose of insulin required to achieve euglycemia is substantially reduced soon after diagnosis. This partial remission is associated with β-cell function and good glucose control. The purpose of this study was to assess whether frequencies of CD4(+) T cell subsets in children newly diagnosed with type 1 diabetes are associated with length of partial remission.

View Article and Find Full Text PDF

CD4(+) CD44(v.low) cells are peripheral precursor T cells that inhibit lymphopenia by generating a large CD4(+) T cell pool containing balanced numbers of naïve, memory, and regulatory Foxp3(+) cells with a diverse TCR repertoire. Recent thymic emigrants (RTE) and stem cell-like memory T cells (T(SCM)) can also replenish a T cell pool.

View Article and Find Full Text PDF

Autoreactive memory CD4(+) T cells play a critical role in the development of type 1 diabetes, but it is not yet known how the clonotypic composition and TCRβ repertoire of the memory CD4(+) T cell compartment changes during the transition from prediabetes to diabetes. In this study, we used high-throughput sequencing to analyze the TCRβ repertoire of sorted islet-infiltrating memory CD4(+)CD44(high) T cells in 10-week-old prediabetic and recently diabetic NOD mice. We show that most clonotypes of islet-infiltrating CD4(+)CD44(high) T cells were rare, but high-frequency clonotypes were significantly more common in diabetic than in prediabetic mice.

View Article and Find Full Text PDF

Nonobese diabetic (NOD) mice develop spontaneous autoimmune Type 1 diabetes (T1D) that results from the destruction of insulin secreting β cells by diabetogenic T cells. The activation of autoreactive T cells occurs in the pancreatic lymph nodes (PLN) from where effector T cells migrate to the pancreas. This study was designed to explore whether T cell populations in the NOD PLN expand in a predictable and reproducible way during disease progression.

View Article and Find Full Text PDF

Mechanisms that control the size of the T cell pool, the ratio between naive cells and memory cells, the number and frequency of regulatory T cells, and T cell receptor (TCR) diversity are necessary to maintain immune integrity and avoid disease. We have previously shown that a subset of naive CD4(+) T cells, defined by the expression on their surface of a very low density of CD44 (CD44(v.low) cells), can inhibit wasting and wasting-associated lymphopenia in mice with cancer.

View Article and Find Full Text PDF

Cachexia is the dramatic weight loss and muscle atrophy seen in chronic disease states, including autoimmunity, cancer, and infection, and is often associated with lymphopenia. We have previously shown that CD4(+) T cells that express the lowest density of CD44 (CD4(+)CD44(v.low)) are significantly reduced in diabetic NOD mice that are cachexic compared with diabetic mice that are not cachexic.

View Article and Find Full Text PDF

One of the long-term consequences of Type I diabetes is weight loss with muscle atrophy, the hallmark phenotype of cachexia. A number of disorders that result in cachexia are associated with immune deficiency. However, whether immune deficiency is a cause or an effect of cachexia is not known.

View Article and Find Full Text PDF

Using the DO11.10 CD4+ TCR-transgenic mouse system, we have recently shown that CD8 blockade promotes the expansion of Ag-specific regulatory CD4+ T cells in mice made tolerant to OVA with anti-CD4 mAb. We now show that CD8 blockade is also critical to promoting responses to nontolerizing Ag in anti-CD4 mAb-treated tolerant mice.

View Article and Find Full Text PDF

Late allograft rejection due to transplant vasculopathy continues to be a major clinical problem. Increasing the ratio of donor transplant size to recipient weight has been shown to reduce the incidence of late allograft failure. Using a murine pancreas transplant model we have tested the hypothesis that increasing the donor transplant size in a recipient can promote long-term allograft survival by promoting recovery from transplant vasculopathy.

View Article and Find Full Text PDF

Transplant vasculopathy in the mouse is thought to be dependent on IL-4 and mediated by IL-5 and eosinophils, whereas in the rat and human systems, IL-4 is associated with the absence of transplant vasculopathy and down-regulation of a Th1-type response. In this study we tested the possibility that the apparent difference in the role of IL-4 in transplant vasculopathy is related to protocol differences rather than to the species being studied. Using a protocol that closely resembles that used in rat and human studies, we developed a model of transplant vasculopathy in the mouse that is associated with Th1-type cytokines and independent of IL-5 and eosinophil infiltration.

View Article and Find Full Text PDF