Publications by authors named "Joanna C Renshaw"

A novel method for precipitating hydroxyapatite (HAp) onto cement paste is investigated for protecting concrete infrastructure from radiological contamination. Legacy nuclear sites contain large volumes of contaminated concrete and are expensive and dangerous to decommission. One solution is to 'design for decommissioning' by confining contaminants to a thin layer.

View Article and Find Full Text PDF

Correction for 'Emerging investigator series: a holistic approach to multicomponent EXAFS: Sr and Cs complexation in clayey soils' by Pieter Bots et al., Environ. Sci.

View Article and Find Full Text PDF

Strontium and caesium are fission products of concern at many nuclear legacy sites and Cs is additionally a significant consideration at sites in the aftermath of nuclear accidents and incidents. Such sites require long-term management to minimize the risk of such contaminants to the environment and the public. Understanding the geochemical speciation of Sr and Cs in situ in the soils and groundwater is essential to develop engineered management strategies.

View Article and Find Full Text PDF

In this work, we elucidate polymer-layered hollow Prussian blue-coated magnetic nanocomposites as an adsorbent to remove radioactive cesium from environmentally contaminated water. To do this, Fe₃O₄ nanoparticles prepared using a coprecipitation method were thickly covered with a layer of cationic polymer to attach hollow Prussian blue through a self-assembly process. The as-synthesized adsorbent was confirmed through various analytical techniques.

View Article and Find Full Text PDF

Ordinary Portland cement (OPC) is by weight the world's most produced man-made material and is used in a variety of applications in environments ranging from buildings, to nuclear wasteforms, and within the human body. In this paper, we present for the first time the direct deposition of biogenic hydroxyapatite onto the surface of OPC in a synergistic process which uses the composition of the cement substrate. This hydroxyapatite is very similar to that found in nature, having a similar crystallite size, iron and carbonate substitution, and a semi-crystalline structure.

View Article and Find Full Text PDF

Uranium (as UO2(2+)), technetium (as TcO4(-)) and neptunium (as NpO2(+)) are highly mobile radionuclides that can be reduced enzymatically by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble species. The redox chemistry of Pu is more complicated, but the dominant oxidation state in most environments is highly insoluble Pu(IV), which can be reduced to Pu(III) which has a potentially increased solubility which could enhance migration of Pu in the environment. Recently it was shown that flavins (riboflavin and flavin mononucleotide (FMN)) secreted by Shewanella oneidensis MR-1 can act as electron shuttles, promoting anoxic growth coupled to the accelerated reduction of poorly-crystalline Fe(III) oxides.

View Article and Find Full Text PDF

There has been a recent increase in the use of silver nanoparticles (Ag NPs) in a wide range of consumer products due to their highly effective antimicrobial properties. However, Ag NPs give cause for concern since their wide use makes them likely to be released into aquatic ecosystems and potentially affect natural bacterial communities. In this study marine biofilms were grown in situ in a coastal site (Singapore Harbour) and exposed in the laboratory for a further 24h to 0-2000 μg L⁻¹ of well characterised Ag NPs.

View Article and Find Full Text PDF

Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.

View Article and Find Full Text PDF
Article Synopsis
  • * Experiments showed that in the absence of Suwannee River fulvic acid (SRFA), Ag NPs caused significant sloughing (bacteria detaching) from the biofilm, indicating harmful NP-bacterial interactions.
  • * When SRFA was present, sloughing decreased and Ag NPs were found within biofilm bacteria; although cell viability remained unchanged, the presence of SRFA seemed to enhance Ag NP accumulation in biofilms, suggesting potential long-term implications.
View Article and Find Full Text PDF

Silver nanoparticles (Ag NPs) are widely used as antibacterial agents. This antibacterial property carries with it a potential environmental risk once these NPs are discharged into the environment. This study investigated the impact on Pseudomonas fluorescens over a 24 h exposure of well characterized Ag NPs at pH values of 6-9, in the presence and absence of Suwannee River humic acids (SRHA).

View Article and Find Full Text PDF

The objective of this study was to determine if there is a nanoscale surface film on aquifer-like materials exposed to deep groundwaters, as has previously been found on surfaces exposed to surface and soil waters. Such surface films will modify surface properties that are so important in determining the mobility of many groundwater pollutants. Muscovite mica was used because a) it is a good analogue for the main sorbing phases of many clastic aquifers and b) its cleavage planes are atomically flat allowing high resolution imaging.

View Article and Find Full Text PDF

Geobacter sulfurreducens reduced Ag(I) (as insoluble AgCl or Ag(+) ions), via a mechanism involving c-type cytochromes, precipitating extracellular nanoscale Ag(0). These results extend the range of metals known to be reduced by Geobacter species and offer a method for recovering silver from contaminated water as potentially useful silver nanoparticles.

View Article and Find Full Text PDF

The release of uranium and other transuranics into the environment, and their subsequent mobility, are subjects of intense public concern. Uranium dominates the inventory of most medium- and low-level radioactive waste sites and under oxic conditions is highly mobile as U(VI), the soluble uranyl dioxocation (UO2)2+. Specialist anaerobic bacteria are, however, able to reduce U(VI)to insoluble U(IV), offering a strategy for the bioremediation of uranium-contaminated groundwater and a potential mechanism for the biodeposition of uranium ores.

View Article and Find Full Text PDF

Given the scale of the contamination associated with 60 years of global nuclear activity, and the inherent high financial and environmental costs associated with invasive physical and chemical clean-up strategies, there is an unparalleled interest in new passive in situ bioremediation processes for sites contaminated with nuclear waste. Many of these processes rely on successfully harnessing newly discovered natural biogeochemical cycles for key radionuclides and fission products. Recent advances have been made in understanding the microbial colonization of radioactive environments and the biological basis of microbial transformations of radioactive waste in these settings.

View Article and Find Full Text PDF

We report the synthesis and structural characterization of [UO(2)(ReO(4))(DPPMO(2))(2)][ReO(4)] and [UO(2)(Cl)(DPPMO(2))(2)][Cl] (where DPPMO(2) = bis(diphenylphosphino)methane dioxide). In both complexes, the linear uranyl dication is coordinated to two bidentate DPPMO(2) ligands in the equatorial plane with one coordinated and one non-coordinated anion (either perrhenate or chloride). We have also prepared the pertechnetate analogue, and, through (31)P and (99)Tc NMR, we have shown that the cation, [UO(2)(TcO(4))(DPPMO(2))(2)](+), is stable in solution.

View Article and Find Full Text PDF

Rhodotorula mucilaginosa produces the siderophore rhodotorulic acid (RA) when grown in iron-limited conditions. R. mucilaginosa grew at rates between 0.

View Article and Find Full Text PDF

An assay to detect UO(2)(2+) complexation was developed based on the chrome azurol S (CAS) assay for siderophores (B. Schwyn and J. B.

View Article and Find Full Text PDF