Kainate receptors have recently been shown to be involved in synaptic transmission, to regulate transmitter release and to mediate synaptic plasticity in different regions of the CNS. However, very little is known about endogenous mechanisms that can control native kainate receptor signalling. In this study we have found that GluR5-containing kainate receptor-mediated actions can be modulated by activation of protein kinase C (PKC) but not protein kinase A (PKA).
View Article and Find Full Text PDFWe identified four PDZ domain-containing proteins, syntenin, PICK1, GRIP, and PSD95, as interactors with the kainate receptor (KAR) subunits GluR5(2b,) GluR5(2c), and GluR6. Of these, we show that both GRIP and PICK1 interactions are required to maintain KAR-mediated synaptic function at mossy fiber-CA3 synapses. In addition, PKC alpha can phosphorylate ct-GluR5(2b) at residues S880 and S886, and PKC activity is required to maintain KAR-mediated synaptic responses.
View Article and Find Full Text PDF