Publications by authors named "Joanna Braks"

Article Synopsis
  • Many variant proteins from Plasmodium multigene families are sent into red blood cells, particularly those from the var, stevor, and rifin families, which help infected cells interact with host cells, leading to issues like tissue sequestration.
  • Despite some awareness of P. falciparum proteins, the roles of many other exported proteins remain unclear, prompting research into the rodent malaria parasite's (RMP) exported proteins from the pir, fam-a, and fam-b families.
  • The study found that these proteins are expressed in both liver and blood stages of the parasite's life cycle, suggesting they may aid parasite development and interact with the host immune response, with the Fam-A family specifically shown to potentially transport lip
View Article and Find Full Text PDF

Plasmodium falciparum infection during pregnancy leads to abortions, stillbirth, low birth weight, and maternal mortality. Infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) via var2CSA protein exposed on the P. falciparum IE membrane.

View Article and Find Full Text PDF

UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P.

View Article and Find Full Text PDF

Purpose: Hyperbaric oxygen therapy (HBOT) is used in the treatment of radiation-induced tissue injury but its effect on (residual) tumor tissue is indistinct and therefore investigated in this study.

Procedures: Orthotopic FaDu tumors were established in mice, and the response of the (irradiated) tumors to HBOT was monitored by bioluminescence imaging. Near infrared fluorescence imaging using AngioSense750 and Hypoxisense680 was applied to detect tumor vascular permeability and hypoxia.

View Article and Find Full Text PDF

Background: Radiation therapy (RT) as part head and neck cancer treatment often leads to irradiation of surrounding normal tissue, such as mandibular bone. A reduced reparative capacity of the bone can lead to osteoradionecrosis (ORN). Hyperbaric oxygen therapy (HBOT) is used to treat ORN, based on its potential to raise the oxygen tension in tissues.

View Article and Find Full Text PDF

A side effect of radiation therapy in the head and neck region is injury to surrounding healthy tissues such as irreversible impaired function of the salivary glands. Hyperbaric oxygen therapy (HBOT) is clinically used to treat radiation-induced damage but its mechanism of action is largely unknown. In this study, we investigated the molecular pathways that are affected by HBOT in mouse salivary glands two weeks after radiation therapy by microarray analysis.

View Article and Find Full Text PDF

Malaria parasites actively remodel the infected red blood cell (irbc) by exporting proteins into the host cell cytoplasm. The human parasite Plasmodium falciparum exports particularly large numbers of proteins, including proteins that establish a vesicular network allowing the trafficking of proteins onto the surface of irbcs that are responsible for tissue sequestration. Like P.

View Article and Find Full Text PDF

We describe a technology for imaging the sequestration of infected red blood cells (iRBC) of the rodent malaria parasite Plasmodium berghei both in the bodies of live mice and in dissected organs, using a transgenic parasite that expresses luciferase. Real-time imaging of sequestered iRBC is performed by measuring bioluminescence produced by the enzymatic reaction in parasites between the luciferase enzyme and its substrate luciferin injected into the mice several minutes prior to imaging. The bioluminescence signal is detected by a sensitive I-CCD photon-counting video camera.

View Article and Find Full Text PDF

Adherence of parasite-infected red blood cells (irbc) to the vascular endothelium of organs plays a key role in the pathogenesis of Plasmodium falciparum malaria. The prevailing hypothesis of why irbc adhere and sequester in tissues is that this acts as a mechanism of avoiding spleen-mediated clearance. Irbc of the rodent parasite Plasmodium berghei ANKA sequester in a fashion analogous to P.

View Article and Find Full Text PDF

Many eukaryotic developmental and cell fate decisions that are effected post-transcriptionally involve RNA binding proteins as regulators of translation of key mRNAs. In malaria parasites (Plasmodium spp.), the development of round, non-motile and replicating exo-erythrocytic liver stage forms from slender, motile and cell-cycle arrested sporozoites is believed to depend on environmental changes experienced during the transmission of the parasite from the mosquito vector to the vertebrate host.

View Article and Find Full Text PDF

Translational repression (TR) plays an important role in post-transcriptional regulation of gene expression and embryonic development in metazoans. TR also regulates the expression of a subset of the cytoplasmic mRNA population during development of fertilized female gametes of the unicellular malaria parasite, Plasmodium spp. which results in the formation of a polar and motile form, the ookinete.

View Article and Find Full Text PDF

Translational repression of messenger RNAs (mRNAs) plays an important role in sexual differentiation and gametogenesis in multicellular eukaryotes. Translational repression and mRNA turnover were shown to influence stage-specific gene expression in the protozoan Plasmodium. The DDX6-class RNA helicase, DOZI (development of zygote inhibited), is found in a complex with mRNA species in cytoplasmic bodies of female, blood-stage gametocytes.

View Article and Find Full Text PDF

A limitation of transfection of malaria parasites is the availability of only a low number of positive selectable markers for selection of transformed mutants. This is exacerbated for the rodent parasite Plasmodium berghei as selection of mutants is performed in vivo in laboratory rodents. We here report the development and application of a negative selection system based upon transgenic expression of a bifunctional protein (yFCU) combining yeast cytosine deaminase and uridyl phosphoribosyl transferase (UPRT) activity in P.

View Article and Find Full Text PDF