Publications by authors named "Joanna Boruc"

Aurora kinases are key regulators of mitosis. Multicellular eukaryotes generally possess two functionally diverged types of Aurora kinases. In plants, including Arabidopsis (), these are termed α- and β-Auroras.

View Article and Find Full Text PDF

Proper orientation of the cell division axis is critical for asymmetric cell divisions that underpin cell differentiation. In animals, centrosomes are the dominant microtubule organizing centers (MTOC) and play a pivotal role in axis determination by orienting the mitotic spindle. In land plants that lack centrosomes, a critical role of a microtubular ring structure, the preprophase band (PPB), has been observed in this process; the PPB is required for orienting (before prophase) and guiding (in telophase) the mitotic apparatus.

View Article and Find Full Text PDF

Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development.

View Article and Find Full Text PDF

By contrast to other eukaryotic kingdoms, plant cytokinesis is an inside-out process. A coordinated action of cytoskeletal transitions and endomembrane trafficking events builds a novel membrane compartment, the cell plate. Deposition of cell wall polymers transforms the lumen of this membrane compartment into a new cross wall, physically separating the daughter cells.

View Article and Find Full Text PDF

The Ran GTPase activating protein (RanGAP) is important to Ran signaling involved in nucleocytoplasmic transport, spindle organization, and postmitotic nuclear assembly. Unlike vertebrate and yeast RanGAP, plant RanGAP has an N-terminal WPP domain, required for nuclear envelope association and several mitotic locations of Arabidopsis thaliana RanGAP1. A double null mutant of the two Arabidopsis RanGAP homologs is gametophyte lethal.

View Article and Find Full Text PDF

The development of nematode feeding sites induced by root-knot nematodes involves the synchronized activation of cell cycle processes such as acytokinetic mitoses and DNA amplification. A number of key cell cycle genes are reported to be critical for nematode feeding site development. However, it remains unknown whether plant cyclin-dependent kinase (CDK) inhibitors such as the Arabidopsis interactor/inhibitor of CDK (ICK)/Kip-related protein (KRP) family are involved in nematode feeding site development.

View Article and Find Full Text PDF

Background: Fluorescence imaging at high spectral resolution allows the simultaneous recording of multiple fluorophores without switching optical filters, which is especially useful for time-lapse analysis of living cells. The collected emission spectra can be used to distinguish fluorophores by a computation analysis called linear unmixing. The availability of accurate reference spectra for different fluorophores is crucial for this type of analysis.

View Article and Find Full Text PDF

Endoreduplication is the process where a cell replicates its genome without mitosis and cytokinesis, often followed by cell differentiation. This alternative cell cycle results in various levels of endoploidy, reaching 4× or higher one haploid set of chromosomes. Endoreduplication is found in animals and is widespread in plants, where it plays a major role in cellular differentiation and plant development.

View Article and Find Full Text PDF

Although protein-protein interaction (PPI) networks have been shown to offer a systems-wide view of cellular processes, only a few plant PPI maps are available. Recently, the core cell cycle of Arabidopsis thaliana has been analyzed by three independent PPI technologies, including yeast two-hybrid systems, bimolecular fluorescence complementation and tandem affinity purification. Here, we merge the three interactomes with literature-curated and computationally predicted interactions, paving the way for a comprehensive picture of the plant core cell cycle machinery.

View Article and Find Full Text PDF

The eukaryotic cell cycle is a process controlled by protein assemblies, of which the key subunits are serine-threonine cyclin-dependent kinases (CDKs). Timely association and dissociation of these assemblies ensure that the cell division program is executed correctly. The challenge to unravel the rules of the plant cell cycle results from the multiplicity of the process-regulating genes that emerged through genome duplications during the evolution of flowering plants.

View Article and Find Full Text PDF

As in other eukaryotes, cell division in plants is highly conserved and regulated by cyclin-dependent kinases (CDKs) that are themselves predominantly regulated at the posttranscriptional level by their association with proteins such as cyclins. Although over the last years the knowledge of the plant cell cycle has considerably increased, little is known on the assembly and regulation of the different CDK complexes. To map protein-protein interactions between core cell cycle proteins of Arabidopsis thaliana, a binary protein-protein interactome network was generated using two complementary high-throughput interaction assays, yeast two-hybrid and bimolecular fluorescence complementation.

View Article and Find Full Text PDF

Cell division depends on the correct localization of the cyclin-dependent kinases that are regulated by phosphorylation, cyclin proteolysis, and protein-protein interactions. Although immunological assays can define cell cycle protein abundance and localization, they are not suitable for detecting the dynamic rearrangements of molecular components during cell division. Here, we applied an in vivo approach to trace the subcellular localization of 60 Arabidopsis (Arabidopsis thaliana) core cell cycle proteins fused to green fluorescent proteins during cell division in tobacco (Nicotiana tabacum) and Arabidopsis.

View Article and Find Full Text PDF

The mitosis-to-endocycle transition requires the controlled inactivation of M phase-associated cyclin-dependent kinase (CDK) activity. Previously, the B-type CDKB1;1 was identified as an important negative regulator of endocycle onset. Here, we demonstrate that CDKB1;1 copurifies and associates with the A2-type cyclin CYCA2;3.

View Article and Find Full Text PDF

Prenylated Rab acceptor 1 (PRA1) domain proteins are small transmembrane proteins that regulate vesicle trafficking as receptors of Rab GTPases and the vacuolar soluble N-ethylmaleimide-sensitive factor attachment receptor protein VAMP2. However, little is known about PRA1 family members in plants. Sequence analysis revealed that higher plants, compared with animals and primitive plants, possess an expanded family of PRA1 domain-containing proteins.

View Article and Find Full Text PDF