Background And Purpose: The therapeutic effects of fluoxetine are believed to be due to increasing neuronal plasticity and reversing some learning deficits. Nevertheless, a growing amount of evidence shows adverse effects of this drug on cognition and some forms of neuronal plasticity.
Experimental Approach: To study the effects of chronic fluoxetine treatment, we combine an automated assessment of motivation and learning in mice with an investigation of neuronal plasticity in the central amygdala and basolateral amygdala.
Eco-HAB is an open source, RFID-based system for automated measurement and analysis of social preference and in-cohort sociability in mice. The system closely follows murine ethology. It requires no contact between a human experimenter and tested animals, overcoming the confounding factors that lead to irreproducible assessment of murine social behavior between laboratories.
View Article and Find Full Text PDFInduced pluripotent cell-derived motoneurons (iPSCMNs) are sought for use in cell replacement therapies and treatment strategies for motoneuron diseases such as amyotrophic lateral sclerosis (ALS). However, much remains unknown about the physiological properties of iPSCMNs and how they compare with endogenous spinal motoneurons or embryonic stem cell-derived motoneurons (ESCMNs). In the present study, we first used a proteomic approach and compared protein expression profiles between iPSCMNs and ESCMNs to show that <4% of the proteins identified were differentially regulated.
View Article and Find Full Text PDFV3 interneurons (INs) are a major group of excitatory commissural interneurons in the spinal cord, and they are essential for producing a stable and robust locomotor rhythm. V3 INs are generated from the ventral-most progenitor domain, p3, but migrate dorsally and laterally during postmitotic development. At birth, they are located in distinctive clusters in the ventral horn and deep dorsal horn.
View Article and Find Full Text PDFIn the rd1 mouse model for retinal degeneration, the loss of photoreceptors results in oscillatory activity (∼10–20 Hz) within the remnant electrically coupled network of retinal ON cone bipolar and AII amacrine cells. We tested the role of hyperpolarization-activated currents (I(h)), voltage-gated Na(+) channels and gap junctions in mediating such oscillatory activity. Blocking I(h) (1 mm Cs(+)) hyperpolarized the network and augmented activity, while antagonizing voltage-dependent Na(+) channels (1 μm TTX) abolished oscillatory activity in the AII amacrine-ON cone bipolar cell network.
View Article and Find Full Text PDFThe loss of photoreceptors during retinal degeneration (RD) is known to lead to an increase in basal activity in remnant neural networks. To identify the source of activity, we combined two-photon imaging with patch-clamp techniques to examine the physiological properties of morphologically identified retinal neurons in a mouse model of RD (rd1). Analysis of activity in rd1 ganglion cells revealed sustained oscillatory (∼10 Hz) synaptic activity in ∼30% of all classes of cells.
View Article and Find Full Text PDFThe influence of the following heavy metals, copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), on haemocytes of the house fly Musca domestica L. was studied under laboratory conditions. House fly larvae were exposed to low or high, semi-lethal concentrations of metals.
View Article and Find Full Text PDFThe toxic effects of heavy metals on organisms are well established. However, their specific action at the cellular level in different tissues is mostly unknown. We have used the housefly, Musca domestica, as a model organism to study the toxicity of four heavy metals: copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb).
View Article and Find Full Text PDF