Proc Natl Acad Sci U S A
July 2014
Using 3D infrared (IR) exchange spectroscopy, the ultrafast hydrogen-bond forming and breaking (i.e., complexation) kinetics of phenol to benzene in a benzene/CCl4 mixture is investigated.
View Article and Find Full Text PDFUsing three-dimensional infrared (3D-IR) spectroscopy, we investigate the vibrational dynamics of isotope-diluted ice Ih. By probing the OD stretch mode of HOD in H2O, we observe an extremely rapid decay (≈200 fs) of the population from the second vibrational excited state. Quantum simulations based on a two-dimensional Lippincott-Schroeder potential agree nearly quantitatively with the experimental 3D-IR lineshapes and dynamics.
View Article and Find Full Text PDFWe utilize two-color two-dimensional infrared spectroscopy to measure the intermolecular coupling between azide ions and their surrounding water molecules in order to gain information about the nature of hydrogen bonding of water to ions. Our findings indicate that the main spectral contribution to the intermolecular cross-peak comes from population transfer between the asymmetric stretch vibration of azide and the OD-stretch vibration of D(2)O. The azide-bound D(2)O bleach/stimulated emission signal, which is spectrally much narrower than its linear absorption spectrum, shows that the experiment is selective to solvation shell water molecules for population times up to ~500 fs.
View Article and Find Full Text PDFWe describe a novel surface enhanced Raman spectroscopy (SERS) sensing approach utilizing modified gold nanoshells and demonstrate its application to analysis of critical redox-potential dependent changes in antigen structure that are implicated in the initiation of a human autoimmune disease. In Goodpasture's disease, an autoimmune reaction is thought to arise from incomplete proteolysis of the autoantigen, α3(IV)NC1(67-85) by proteases including Cathepsin D. We have used SERS to study conformational changes in the antigen that correlate with its oxidation state and to show that the antigen must be in the reduced state in order to undergo proteolysis.
View Article and Find Full Text PDF