Application of the FOLFOX scheme to colorectal cancer (CRC) patients often results in the development of chemo-resistance, leading to therapy failure. This study aimed to develop a functional and easy-to-use algorithm to predict patients' response to FOLFOX treatment. Transcriptomic data of CRC patient's samples treated with FOLFOX were downloaded from the Gene Expression Omnibus database (GSE83129, GSE28702, GSE69657, GSE19860 and GSE41568).
View Article and Find Full Text PDFBackground: Our previous findings proved that ABCC4 and ABCG2 proteins present much more complex roles in colorectal cancer (CRC) than typically cancer-associated functions as drug exporters. Our objective was to evaluate their predictive/diagnostic potential.
Methods: CRC patients' transcriptomic data from the Gene Expression Omnibus database (GSE18105, GSE21510 and GSE41568) were discriminated into two subpopulations presenting either high expression levels of ABCC4 (ABCC4 High) or ABCG2 (ABCG2 High).
The platelet-derived microparticles (PMPs) have been connected with tumor progression and metastatic dissemination. PMPs infiltrate solid tumors and transfer platelet-derived cargo to cancer cells. The functional roles of PMPs in cancer progression are still poorly understood.
View Article and Find Full Text PDFA thorough study of the exosomal proteomic cargo may enable the identification of proteins that play an important role in cancer development. The aim of this study was to compare the protein profiles of the serum exosomes derived from non-small lung cancer (NSCLC) patients and healthy volunteers (control) using the high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS) method to identify potentially new diagnostic and/or prognostic protein biomarkers. Proteins exclusively identified in NSCLC and control groups were analyzed using several bioinformatic tools and platforms (FunRich, Vesiclepedia, STRING, and TIMER2.
View Article and Find Full Text PDFPurpose: Suppressor of mothers against decapentaplegic homolog 4 (SMAD family member 4, ) is involved in the adenoma-carcinoma pathway, leading to the development of colon cancer. The encoded protein is a key downstream signaling mediator in the TGFβ pathway. This pathway has tumor-suppressor functions, including cell-cycle arrest and apoptosis.
View Article and Find Full Text PDFBackground: Metastasis is the main cause of death in patients with colorectal cancer (CRC). Apart from platelets, platelet-derived microparticles (PMPs) are also considered important factors that can modify the activity of cancer cells. PMPs are incorporated by cancer cells and can also serve as intracellular signalling vesicles.
View Article and Find Full Text PDFBackground: Neuromedin U (NMU) was identified as one of the hub genes closely related to colorectal cancer (CRC) progression and was recently shown to be a motility inducer in CRC cells. Its autocrine signalling through specific receptors increases cancer cell migration and invasiveness. Because of insufficient knowledge concerning NMU accessibility and action in the tumour microenvironment, its role in CRC remains poorly understood and its potential as a therapeutic target is still difficult to define.
View Article and Find Full Text PDFOne of the main treatment modalities for non-small-cell lung cancer (NSCLC) is cisplatin-based chemotherapy. However, the acquisition of cisplatin resistance remains a major problem. Existing chemotherapy regimens are often ineffective against cancer cells expressing aldehyde dehydrogenase (ALDH).
View Article and Find Full Text PDFDifferent drug combinations including irinotecan remain some of the most important therapeutic modalities in treating colorectal cancer (CRC). However, chemotherapy often leads to the acquisition of cancer drug resistance. To bridge the gap between in vitro and in vivo models, we compared the mRNA expression profiles of CRC cell lines (HT29, HTC116, and LoVo and their respective irinotecan-resistant variants) with patient samples to select new candidate genes for the validation of irinotecan resistance.
View Article and Find Full Text PDFBackground: Successful colorectal cancer (CRC) therapy often depends on the accurate identification of primary tumours with invasive potential. There is still a lack of identified pathological factors associated with disease recurrence that could help in making treatment decisions. Neuromedin U (NMU) is a secretory neuropeptide that was first isolated from the porcine spinal cord, and it has emerged as a novel factor involved in the tumorigenesis and/or metastasis of many types of cancers.
View Article and Find Full Text PDFCancers (Basel)
January 2021
During metastasis, cancer cells undergo phenotype changes in the epithelial-mesenchymal transition (EMT) process. Extracellular vesicles (EVs) released by cancer cells are the mediators of intercellular communication and play a role in metastatic process. Knowledge of factors that influence the modifications of the pre-metastatic niche for the migrating carcinoma cells is important for prevention of metastasis.
View Article and Find Full Text PDFColorectal cancer (CRC) presents significant molecular heterogeneity. The cellular plasticity of epithelial to mesenchymal transition (EMT) is one of the key factors responsible for the heterogeneous nature of metastatic CRC. EMT is an important regulator of ATP binding cassette (ABC) protein expression; these proteins are the active transporters of a broad range of endogenous compounds and anticancer drugs.
View Article and Find Full Text PDFThe authors wish to make the following corrections to this paper [...
View Article and Find Full Text PDFNeuromedin U (NMU), a neuropeptide isolated from porcine spinal cord and named because of its activity as a rat uterus smooth muscle contraction inducer, is emerging as a new player in the tumorigenesis and/or metastasis of many types of cancers. Expressed in a variety of tissues, NMU has been shown to possess many important activities in the central nervous system as well as on the periphery. Along with the main structural and functional features of NMU and its currently known receptors, we summarized a growing number of recently published data from different tissues and cells that associate NMU activity with cancer development and progression.
View Article and Find Full Text PDFTumor metastasis, the major problem for clinical oncology in colon cancer treatment, is linked with an epithelial-mesenchymal transition (EMT). The observed cellular transformation in this process is manifested by cell elongation, enhanced cell migration and invasion ability, coordinated by cytoskeleton reorganization. In the present study, we examined the role of tubulin-β4 (TUBB4B) downregulation that occurs during EMT in colon cancer cells, in the modulation of the function of microtubules.
View Article and Find Full Text PDFDuring tumor development and ongoing metastasis the acquisition of mesenchymal cell traits by epithelial carcinoma cells is achieved through a programmed phenotypic shift called the epithelial-to-mesenchymal transition, EMT. EMT contributes to increased cancer cell motility and invasiveness mainly through invadosomes, the adhesion structures that accompany the mesenchymal migration. The invadosomes and their associated proteases restrict protease activity to areas of the cell in direct contact with the ECM, thus precisely controlling cell invasion.
View Article and Find Full Text PDFEpithelial-to-mesenchymal transition (EMT) in cancer cells, represents early stages of metastasis and is a promising target in colorectal cancer (CRC) therapy. There have been many attempts to identify markers and key pathways induced throughout EMT but the process is complex and depends on the cancer type and tumour microenvironment. Here we used the colon cancer cell line HT29, which stably overexpressed Snail, the key transcription factor in early EMT, as a model for colorectal adenocarcinoma cells with a pro-metastatic phenotype.
View Article and Find Full Text PDFMultidrug resistance, mediated by members of the ATP-binding cassette (ABC) proteins superfamily, has become one of the biggest obstacles in conquering tumour progression. If the chemotherapy outcome is considered successful, when the primary tumour volume is decreased or completely abolished, modulation of ABC proteins activity is one of the best methods to overcome drug resistance. However, if a positive outcome is represented by no metastasis or, at least, elongation of remission-free time, then the positive effect of ABC proteins inhibition should be compared with the several side effects it causes, which may inflict cancer progression and decrease overall patient health.
View Article and Find Full Text PDFFilamin A (FLNA) is actin filament cross-linking protein involved in cancer progression. Its importance in regulating cell motility is directly related to the epithelial to mesenchymal transition (EMT) of tumor cells. However, little is known about the mechanism of action of FLNA at this early stage of cancer invasion.
View Article and Find Full Text PDFProteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e.
View Article and Find Full Text PDFThe contribution of endothelial cells to scar and fibrotic tissue formation is undisputedly connected to their ability to undergo the endothelial-to-mesenchymal transition (EndMT) towards fibroblast phenotype-resembling cells. The migration model of fibroblasts and fibroblast-resembling cells is still not fully understood. It may be either a Rho/ROCK-independent, an integrin- and MMP-correlated ECM degradation-dependent, a mesenchymal model or Rho/ROCK-dependent, integrin adhesion- and MMP activity-independent, an amoeboid model.
View Article and Find Full Text PDFVascular endothelial growth factor-D (VEGF-D) is an angiogenic and lymphangiogenic glycoprotein that facilitates tumour growth and distant organ metastasis. Our previous studies showed that VEGF-D stimulates the expression of proteins involved in cell-matrix interactions and promoting the migration of endothelial cells. In this study, we focused on the redox homoeostasis of endothelial cells, which is significantly altered in the process of tumour angiogenesis.
View Article and Find Full Text PDFPostepy Hig Med Dosw (Online)
September 2016
Inhibition of E-cadherin gene expression by transcription factor SNAIL is known to be a crucial element of Epithelial to Mesenchymal Transition; EMT. Epigenetic regulation of E-cadherin expression is regulated by SNAIL binding to E-box sequences in the CDH1 gene promoter and recruiting enzymes belonging to repressor complexes that are directly engaged in histone modifications and DNA methylation leading to the modification of chromatin structure. SNAIL involvement in cell acquisition of invasive phenotype is based on direct suppression of tight-junction and gap junction proteins.
View Article and Find Full Text PDFBackground: The epithelial-mesenchymal transition (EMT) is considered a core process that facilitates the escape of cancer cells from the primary tumor site. The transcription factor Snail was identified as a key regulator of EMT; however, the cascade of regulatory events leading to metastasis remains unknown and new predictive markers of the process are awaited.
Methods: Gene expressions were analysed using real-time PCR, protein level by Western immunoblotting and confocal imaging.
Class III β-tubulin (TUBB3) is a marker of drug resistance expressed in a variety of solid tumors. Originally, it was described as an important element of chemoresistance to taxanes. Recent studies have revealed that TUBB3 is also involved in an adaptive response to a microenvironmental stressor, e.
View Article and Find Full Text PDF